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Abstract. There is an increasing demand for storage capacity and s-
torage throughput, driven largely by new data types such as video data
and satellite images as well as by the growing use of the Internet and the
web that generate and transmit rapidly evolving datasets. Thus, there
is a need for storage architectures that scale the processing power with
the growing size of the datasets. In this paper, we present the SmAS sys-
tem that employs network attached disks with processing capabilities. In
the SmAS system, users can deploy and execute code at the disk. Ap-
plication code is written in a stream-based language that enforces code
security and bounds the code’s memory requirements. The SmAS oper-
ating system at the disk provides basic support for process scheduling
and memory management. We present an initial implementation of the
system and report performance results that validate our approach for
data-intensive applications.

1 Introduction

There is an increasing demand for storage capacity and storage throughput.
This demand is driven largely by new data types such as video data and satellite
images as well as the growing use of the Internet and the web that generate
and transmit rapidly evolving datasets, take for example the huge amount of
data produced by e-commerce transactions [8,6]. Furthermore, there is growing
interest in data mining applications that efficiently analyze large datasets for
decision support. Thus, there is a need for storage architectures that scale the
processing power with the growing size of the datasets.

Recent disks embed powerful ASIC designs in order to deliver their high
bandwidth; such chips are capable of doing considerable processing (for instance,
see how complex the SCSI protocol is [2]). In addition, current disks have caches
in the order of MB (for example, Seagate’s Cheetah has up to 16 MB of cache).
This suggests that data can be processed locally at the disk. Such disks are
called active [1, 9] or intelligent [7] disks. The idea of data processing at the disk
is not a new one. Early proposals include the IBM 360 I/O processors and the
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specialized database servers of the 80’s [4]. What makes active disk architectures
attractive today is that current technology is such that sufficient processing
power and memory can be economically embedded in disks. Active disks have
been proposed as a cheap replacement to expensive disks; they communicate with
the host processor through the local bus (typically SCSI or Fiber Channel). It
is envisioned that they will be able to relieve the host processor by acquiring
and executing part of the application very close to the data. Such architectures
are capable of handling large datasets, since the number of processors scale with
the number of disks. In addition, they can effectively reduce the amount of data
transfered from the disk to the host processor.

At the same time, distributed file systems are used increasingly nowadays. A
good reason is the huge databases maintained by various companies [14]. Thus, a
distributed storage architecture is needed to provide efficient and scalable access
to data. Such an architecture is provided by NASD [5] coupled with their object-
oriented file system for network attached storage.

Active disks have been mainly envisioned as attachments to the local bus of a
server [12]. This would however require expensive server architectures especially
if one also considers the resources required for supporting multiple interconnect-
ed active disks. Furthermore, it is essential, from a practical point of view, to
investigate devices that do not require alterations to a given infrastructure. To
this end, a smart disk should use part of its processing capabilities to support
a simple TCP/IP stack and attach itself on a local network. Apart from the
obvious cost reductions, this approach has the additional advantage of true dis-
tributed processing, without the bottleneck of a front-end processor, since in a
multiple active disk arrangement [12] disks can only communicate with clients
through the server processor’s connection to the network.

In this paper, we present the SMart Autonomous Storage (SmAS) system.
SmAS devices are autonomous (i.e. network-ready) disks but they also have
significant processing capabilities like active disks. A SmAS device could pos-
sibly include interface support for SCSI or FiberChannel local buses, so as to
be attached on a local bus if desired. SmAS disks reduce the communication
overhead of transmitting large volumes of data over the network by executing
data-intensive applications at the disk. In addition, they release the host proces-
sor by undertaking part of the computation.

Our focus is on building a running system. We consider the actual constraints
placed on the application programs to be run on the disk and the necessary op-
erating system support for executing them. Portions of the application programs
to be executed at the disk, called filters, are written in a special-purpose lan-
guage that ensures code safety, sets bounds on the filter’s memory requirements
and provides a stream-based interface. Operating system support at the disk is
kept at a minimum and includes filter scheduling and memory management. We
have tested our initial implementation of SmAS and compare its performance
with NFS. The results are encouraging since the measured performance is close
to the expected ideal speed-up.



The remainder of this paper is organized as follows. In Section 2, we introduce
the SmAS architecture, while in Section 3, we report on the implementation of
SmAS. In Section 4, we present related work. Section 5 concludes the paper.

2 The SmAS Architecture

SmAS disks are network-attached disks with processing power. In order for the
disk to be employed seamlessly in an existing network, all standard operations
are supported (open(), read(), write(), 1seek() etc.); a SmAS disk can easily
replace a conventional NFS server.

The application code consists of two portions: the client-side part, executed
at the client, and the SmAS-side part, executed at the smart disk. The latter
is called filter, and is written in a special-purpose, C-like language. In general,
filters are expected to implement processing that reduces the volume of data to
be transfered from the disk to the client. For example, instead of transferring
the whole file at the client side and performing an SQL-Select there, a filter may
perform an SQL-Select locally and thus communicate only the selected data to
the application. Filters are cross-compiled at the host disk. Clients can then
register the executable code at the client’s side. They can then be download-
ed (registered) to the smart disk. The client programs invoke filters through a
specific series of function calls. The filter code is executed at the disk. Basic min-
imum operating system support is required at the disk for efficiently executing
the filters.

Filter Characteristics. Filters are programs that are executed at the disk.
Special requirements imposed on filters include the following: (a) Since disk
memory is limited, each filter program should use only a pre-specified portion
of this memory. Furthermore, a filter should not dynamically allocate or free
memory. (b) Filters should not be allowed to directly read from or write to the
disk, to avoid any disk corruption.

We have adopted a stream-based interface for filters similar to the one pro-
posed in disklets [12,1]. A filter, upon registration, specifies its exact memory
requirements. A filter reads from an input stream and writes to an output stream,
both of which are controlled by the disk’s OS.

Writing and Registering Application Code. Filters are written in a special-
purpose language, quite similar to C. This language enforces filters to declare
all the variables that they need as global variables, allowing thus for statically
calculating their exact memory requirements. Two functions are then expected
to be defined: a filter_init() function and a filter_body() function. The
former is used to possibly initialize the filter’s global variables. filter body ()
is the function that implements the core filter processing and has two parameters:
an input_buffer and an output_buffer. Both functions have no local variables;
the only variables they can use are the global ones, if any. In addition, they are
not allowed to perform any function calls.



A filter is cross-compiled at the client’s side. The compiled code can be reg-
istered at the smart disk by using a smass_addfilter () call, which results in
downloading the executable code of the filter at the disk. Filters thus registered
are placed in a filter library.

The client-side part of the application selects the required filter with a smas-
_usefilter () call; this call identifies the filter to be used and causes the exe-
cution of the respective filter_init () function at the smart disk. After that,
the client has access to the relevant remote data, one entry at a time, by con-
tinuously calling smas nextrecord(). A call to smas nextrecord() will ship
the next filtered record to the client-side part. What actually happens is that
smas nextrecord() reads a record from the disk and then invokes the filter-
body () function, with the read record as a parameter (input_buffer). The
filter’s function, in turn, decides whether the record meets the criteria, and if so
it notifies smas nextrecord() by returning a value of Send. smas_nextrecord()
then sends whatever the filter has placed in its output_buffer to the client. If
filter body() returns a value of NoSend, smas nextrecord() does not ship
anything to the client, loads the next record from the file and invokes the filter
again. This is useful when more than one records of the file must be processed
before returning control to the client (e.g., computing the maximum value). Fig.
1 provides an example of writing and invoking a filter.

/* Define the record structure for easy handling */
typedef struct{ int key; char data[96]; } recstruct;

/* Nothing useful here */
filter_init() {}

/* The filter’s body — pass only records with key > 10 */
filter_body(recstruct *in, void *out, int *outbytes) {
if (in->key <= 10) /* Compare to 10 */
return (NoSend) ;
out = (void *) in; *outbytes = sizeof (recstruct);
return (Send);

}
(a) writing a filter

/* Register a filter */
smas_addfilter (SQL_SELECT) ;

/* Open remote file */

fd = smas_open("zeus.cs.uoi.gr:/pub/testfile", O_RDONLY);
/¥ Specify the file and filter to use */

smas_usefilter (fd, SQL_SELECT);

/* Now get and process all selected records */
while ( (output = smas_nextrecord(fd)) != End0fFile )
process (output) ;

(b) invoking a filter

Fig. 1. Writing and invoking the SQL_SELECT filter.



Disk-side Support. The SmAS operating system (SmAS OS) should be as
thin as possible in order to minimize execution overheads and memory costs.
Consequently, its functionality should be kept down to a minimum. The only
offered services must be networking, process (filter) management, and memory
management. Full networking functionality is necessary for attaching the disk
to an existing network. Such functionality should be considered rather common
place and inexpensive (consider for example the network-ready CD-ROM server
by Axis [3]).

A limited form of process management will be required in order to schedule
the filter execution. Such a need arises when multiple clients are connected to the
disk. Process management should be simple and efficient. However, as discussed
in [1], simple strategies like run-to-completion could ultimately limit the disk’s
performance. In our case, the fact that filters are pre-compiled and embedded
in the disk’s library allows for accurate estimations of their running times and,
consequently, for more informed scheduling strategies, like shortest-job-first [11].

Finally, memory management is probably the most important service since
disk’s memory is usually its most limited resource. However, memory manage-
ment is highly simplified due to the filter-based processing: the memory require-
ments of the filters are known apriori and are satisfied as soon as a filter starts
execution. There is no memory swap or process switching. Thus, since the filter
cannot allocate dynamically any more memory, it is a simple (and quick) matter
to free the allocated memory as soon as the filter completes its execution. We
use a first-fit method to allocate memory.

3 Implementation

We have emulated a SmAS device using an old Pentium-based PC, running at
166 Mhz, with 32Mbyte of memory and with a minimized version of Linux as
its operating system. The hardware components are analogous to that found
inside a present-day disk only much more economical. The SmAS system soft-
ware (SmASOS) is running as a Linux daemon and awaits at a particular port
for a client connection. Communication is handled by the standard socket li-
brary. At startup, SmASOS acquires a 16Mbyte memory chunk and uses it for
implementing its own memory management.

The special-purpose language in which filters are written is an enriched subset
of C. We have implemented a compiler for this language, that converts the
filter code to standard C code which is then cross-compiled at the client side.
Currently, the produced code is in the Linux shared library format which is
directly down-loadable to the SmAS disk at run time. To verify the validity of
our approach as well as reveal any inefficiencies in the implementation, we have
experimented with a number of applications.

Although simple, a particularly illuminating application is the SQL-Select
filter shown in Fig. 1. The client utilizes the SQL-Select filter in order to obtain
and process relevant records from a file stored at the smart disk. The filtering



is done locally at the disk, which returns only the appropriate records to the
application, minimizing thus network communication.

/* Open the remote file - NFS mounted */
fd = open("/mnt/zeus/pub/testfile", O_RDONLY);

/¥ Get, filter and process records */
while ( read(fd, buffer, 100) !'= 0 )
/* Filter at our (client) side *
if ( checkcondition(buffer) )
process (buffer) ;

Fig. 2. Sample application: Traditional NFS approach

We then executed the same application by NFS-mounting the file (Fig. 2)
and compared the total running times. If Tsprass and Tnps are the corre-
sponding running times of the two approaches, the observed speedup is defined
as Tnrs/Tsmass and is plotted in Fig. 3, for various record sizes.
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Fig. 3. Speedup with respect to traditional NFS handling

Let s be the selectivity factor, that is the probability that a data record is
selected by the SQL-Select filter. If a file contains N records then the SmAS
code will only deliver sN of them to the application. We generated files that
would result in prescribed values for the selectivity factor s (between 10% and
100%). Fig. 3 shows clearly that the SmAS version is able to deliver superior
performance, especially for smaller selectivity values. This fact should actually
be expected because of the reduced network communication.

The results in Fig. 3 were obtained for file sizes in the area of 100MBytes.
In order to determine the socket messaging overheads we experimented with
various record sizes. It can be seen from the figure that the performance did
not exhibit a wide variance; however, the smaller the record size the smaller the



observed speedup. This is due to the headers inserted by the socket library to a
message; these extra bytes account for a smaller percentage as the message size
grows, thus improving performance.

Assuming that the communication / computation (processing) time ratio per
record is greater than one, computation (processing) time, then the total running
time should be dominated by the total communication time. Since the SmAS
version only communicates a portion s of the total data, while the NFS-mounted
file approach communicates all of it to the client, it is expected that (ideally) a
speedup of the order of 1/s should be observed.

Fig 3 however shows that despite the improvements over NFS, the perfor-
mance of the SmAS application is actually well below the ideal. This is largely
due to the fact that NFS is highly optimized, utilizing prefetching and caching
techniques which in effect pipelines computation and communication to a high
degree. We are currently optimizing SmASOS and investigate data prefetching
techniques. We are confident that performance will move much closer to the ide-
al. Tt is also in our future plans to provide kernel support for SmAS in Linux,
which will improve performance significantly.

4 Related Work

A stream-based programming model for disklets (i.e., disk-resident code) is p-
resented in [12,1]. Their active disks are attached to the local bus of the host
processor. The disklet programming model is similar to ours. They justify their
design decisions by providing a detailed simulation of active disks. In contrast,
our focus is on building an actual system which introduces practical restrictions.
In [12,13], an evaluation of the disklet model is provided against two alternative
architectures: shared memory multiprocessors (SMPs) and workstation cluster-
s. For most of the applications tested, active disks and clusters significantly
outperformed the SMP architecture. The IDISKs (Intelligent disks) architecture
proposed in [7] is based on replacing the nodes in a shared-nothing cluster server
with intelligent disks that is disks capable of local processing. The main differ-
ence in the IDISKs architecture is that the disks are directly connected with each
other via switches thus exhibiting much higher bandwidth disk-to-disk commu-
nication. The architecture closest to SmAS is the active disks of [9]. The authors
of [9] concentrate on developing a number of applications to validate the ac-
tive disks approach. Their analytical and experimental results promise linear
speed-ups in disk arrays of hundreds of active disks for certain data-intensive
applications. Instead, the alternative of directly attaching a number of tradi-
tional SCSI disks to the local bus of a single server machine caused the server
CPU or the interconnect bandwidth to saturate even when a small number of
disks (less that ten) was attached. Besides research on active disk, there is some
recent interest in shipping application code to the data sources [10]. Application
code is in the form of bytecodes. Using bytecodes is not a feasible approach in
our case since the limited resources of the disk do not allow for a java execution
machine.



5 Summary

In this paper, we introduced the SmAS network attached disk architecture. As
compared to a classical file server, an autonomous network-attached device offers
significant advantages. First of all, the cost is much smaller, so that one could
purchase a number of smart disks for the price of a mid-sized server. Second,
SmAS devices have dedicated processing on the disk that provides for efficient
distributed processing. A server on the other hand is a general purpose machine
that has to deal with many other things apart from file processing. Third, by
shipping computation at the disk, network traffic is reduced, since only the rel-
evant data are tranferred to the clients. The results of an initial implementation
of SmAS are encouraging and justify our design decisions.
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