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Abstract

In the total exchange problem every node in a network needs to send a different
message to every other node. It is just one of a number of information dissemination
problems known as collective communications. We present a time-optimal solution
to the problem, under the assumption that a node can send and receive only one
message at each step (single-port model), for any Cayley graph. Rings, hypercubes,
cube-connected cycles, butterflies are some well-known Cayley networks which can
take advantage of our method. Our method exploits symmetries inherent in Cayley
graphs to devise what we call node-invariant algorithms which behave uniformly

across the network and are provably time optimal.
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1 Introduction

Collective communications for distributed-memory multiprocessors have recently received
considerable attention, as for example is evident from their inclusion in the Message Passing
Interface standard and from their importance in supporting various constructs in High Per-
formance Fortran. This is easily justified by their frequent appearance in parallel numerical
algorithms [4].

Broadcasting, scattering, gathering, multinode broadcasting (gossiping) and total ex-
change constitute a set of representative information dissemination problems that have to
be efficiently solved in order to maximize the performance of message-passing parallel pro-
grams; see the survey by P. Fraigniaud and E. Lazard [10]. In total exchange, which is also
known as multiscattering or all-to-all personalized communication, each node in a network
has distinct messages to send to all the other nodes. Various data permutations occurring
e.g. in parallel FFT and basic linear algebra algorithms can be viewed as instances of the
total exchange problem [4].

Algorithms to solve the problem for a number of networks under a variety of mod-
els/assumptions have appeared in many recent works, mostly concentrating in hypercubes
and tori (e.g. [15, 11, 3, 16]). Here we are going to follow the so-called single-port model
in a store-and-forward network. Formally, our problem will be the distribution of distinct

messages from every node to every other node subject to the following conditions:
¢ only adjacent nodes can exchange messages,

e a message requires one time unit (or step) in order to be transferred between two

nodes,
e a node can send at most one message and receive at most one message in each step.

Under this model, time-optimal total exchange algorithms have been given in [4, pp. 81-83]
for hypercubes and in [13] for star graphs. In this paper we are going to show that it is
possible to solve the problem in the minimum time in any Cayley network. Hypercubes
and star graphs belong to the class of Cayley networks, as do complete graphs, rings, cube-
connected cycles, (wrapped) butterflies and many other interesting and widely studied

networks whose significance in well-known [12].
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The paper is organized as follows. Section 2 introduces some elementary graph-theoretic
and group-theoretic notation. In Section 3 we derive a simple property of Cayley networks
which will be useful for our arguments. In Section 4 we give a lower bound for the time
needed to perform total exchange under the single-port model. In the same section we give
sufficient conditions for achieving the lower bound. We then proceed to formally define the
class of node-invariant algorithms and prove its optimality for the total exchange problem
in Section 5. A simple node-invariant algorithm is given in Section 6, along with an example
in hypercubes. Finally, Section 7 summarizes the results.

We should note that in this paper we only provide a short report of the results, avoiding

formal proofs. A more detailed exposition of the present material can be found in [9].

2 Graph-theoretic and group-theoretic notions

An (undirected) graph G consists of a set V' of nodes (or vertices) interconnected by a
set E of (undirected) edges. This is the usual model of representing a multiprocessor
interconnection network: each processor corresponds to a node and each communication
link corresponds to an edge. Thus the terms ‘graph’ and ‘network’ will be considered
synonymous here. Nodes connected by an edge in E are adjacent to each other. Nodes
adjacent to v € V' are neighbors of v.

A path in G from node v to node u is a sequence of nodes v = vy, vy,...,v, = u, such
that all vertices are distinct and for all 0 < i < £, the edge (v;,v;41) € E. We say that
the length of a path is £ if it contains £ vertices apart from v. In a connected graph there
exists a path between any two nodes, and this is the class of graphs we consider here. The
distance, dist(v,u), between vertices v and u is the length of a shortest path between v
and u. Finally, the eccentricity of v, e(v), is the distance to a node farthest from v, i.e.

e(v) = max{dist(v,u)}.

ueVv

An automorphism of the graph is a mapping from the vertices to the vertices that
preserves the edges. Formally, an automorphism of G is a permutation ¢ of V' such that
(0(v),o(u)) € E if and only if (v,u) € E. If for any pair of vertices v, u there exists an

automorphism that maps v to u then the graph is node symmetric.



A group consists of a set G and an associative binary operation ‘-’ on G with the following
two properties. There exists an identity element — that is an element ¢ € G for which
a-e=¢€-a=aforalla € G— and for each a € G there exists an inverse element, denoted
by a~! — that is an element a ! € G for which a-a ! = a=! - @ = e. The inverse of an
element is unique. It is known that the set of automorphisms of a graph G is a group with
respect to the composition operation, and we will denote it by II(G).

Cayley graphs [5, 1] are based on groups and constitute a large class of node symmetric
networks. Given a set I' = {1, 72, ..., 74} of generators for a group G, a Cayley graph has
vertices corresponding to the elements of G and edges corresponding to the action of the
generators. That is, if v,u € G, the edge (v,u) exists in G iff there is a generator v € T’
such that v - v = u. A usual assumption is that the identity element of G does not belong
to I (in order to avoid edges from a node to itself) and that T" is closed under inverses (so
that the graph is in effect undirected).

The class includes quite important networks such as the hypercube, the (wrapped)

butterfly, the cube-connected cycles [2, 14, 8]. Also, connected circulant graphs [6] (which
include the rings) are Cayley networks [5].

3 An automorphism property of Cayley graphs

Let G be a node symmetric network with node set V' = {vy,v1,...,v,_1}, and let II(G) be
its automorphism group. Denote by I, .(G) the subset of II(G) consisting of all automor-

phisms that map vy to v;:
1,(G) = {o | o(w) = v, o € NG}

Notice that II,,(G) is nonempty since G is node symmetric. From each set II,, (G) we select

one automorphism o, and form the set
¥(G) =Ao,, | 0o, €1,,(G),i=0,1,...,n—1}.

In particular, we select o,, to be the identity mapping. Let oo’ be the composition of

mappings o and o’. We insist that the selected mappings have the following property: for



every neighbor v, of node vy and for every : = 0,1,...,n — 1

Y ?

0oy (va) = Ou;Ou,- (1)

In simple terms, requirement (1) means that if v, is mapped, through o,,, to some neighbor
v of v; then o, can be written as the composition of o,, and o,,. The implications of (1)

will be seen shortly; but first we have the following result.
Lemma 1 Every Cayley network has a set %(G) of automorphisms that satisfy (1).

Proof outline: The mapping o,,(v,) = v; - v5 1. v,, where vy 1 is the inverse element of
vy in G, is an automorphism of the graph [1] and clearly maps vy to v;. It is seen that

o, (va)(Va) = 0v, (0, (v2)), which satisfies (1). O

Notice that the set of automorphisms given in the proof of Lemma 1 may not be the
only one which satisfies (1). Also, if the network is known, the automorphisms may obtain

a (computationally) simpler form.

Ezxample:
Consider a ring R,, with n nodes. Node v; is adjacent to nodes v;g; and v;51 Where @
and © denote addition and subtraction modulo nn. A set E(G) of automorphisms with the

desired properties consists of the following mappings:
00 (Vs) = Viga,
1=20,1,...,n — 1. Clearly,
T, wa) (V2) = v, (Vo) = Vigage = Ov;(Vaga) = 00 (0, (v2)),

satisfying (1). Actually, the above mappings work for any (connected) circulant graph.
O

As it will be seen shortly, during total exchange nodes need to send messages to various
destinations. A node must then pick one of its neighbors through which the message will

be routed to its destination. We have the following lemma (see [9] for the proof).
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Lemma 2 Let ¥(G) be a set of automorphisms satisfying (1). If vy “picks” one of its
neighbors, v,, and every node v;, i = 1,2,...,n — 1, “picks” neighbor o, (v,) then (a)
every node is picked by exactly one other node and (b) if v, is the node that picks vy then
0y, (vp) is the node that picks v;.

4 Lower bound on total exchange time

In the total exchange problem, a node v has to send n — 1 distinct messages, one for each of
the other nodes in an n-node network. If there exist ny nodes in distance d from v, where

d=1,2,...,e(v), then the messages sent by v must cross

e(v)
s(v) = Z dng
d=1

links in total. For all messages to be exchanged, the total number of link traversals must
be

Sg = Z s(v).

veEV
The quantity s(v) is known as the total distance or the status [7] of node v.
Every time a message is communicated between adjacent nodes one link traversal occurs.
If nodes are allowed to transmit only one message per step, the maximum number of link
traversals in a single step is at most n. Consequently, we can at best subtract n units from

Se in each step, so that a lower bound on total exchange time is

Sa
> —
755 @)

Because all nodes in a node symmetric graph have the same status [7], it is seen that for
such networks the lower bound is simply 7' > s(v), where v is any node.
Based on the above discussion we immediately have the following sufficient conditions

in order for a total exchange scheme to achieve the lower bound of (2):

all nodes are busy all the time, and, (3)

every transmitted messages gets closer to its destination. (4)



The conditions guarantee that n units are subtracted from Sg at every step, which is the
best we can do. Notice that we must require that transmitted messages are not derouted,
that is, they always follow minimal paths, getting closer to their destination after each link

traversal.

5 Optimal algorithms

Every node v; in the network maintains a message queue, @),,, where incoming messages
from neighbors are deposited until they are scheduled for transfer to some other node. If
an incoming message is destined for v; it is assumed that it does not join the message
queue but is rather forwarded to the local processor for consumption. At node v; some
local algorithm .A,, operates in order to schedule the message transfers. Whenever there
exist messages in @,., A,, is responsible for selecting the message to leave in the next time

unit and the neighbor of v; to which the message will be sent.

Definition 1 A distributed total exchange algorithm A = (A,,, Ay,,--.,A,,_,) is a col-
lection of local algorithms, algorithm A, running on node v;, ¢ = 0,1,...,n—1. Algorithm
A,. is written as A,, = (f,., w,,), where, given a message queue Q,., f,., selects a message

fo:(Qy,) = m and w,, selects a neighbor w,,(m) of v;.

The idea now is to let every node v; select a message “corresponding” to the message
selected by node vy and to send it to a neighbor “corresponding” to the neighbor selected by
vg. This way we expect that the algorithm will behave uniformly across the network. The
implication of such a behavior will be that all nodes have “corresponding” message queues
at each step, hence queues that have the same size. We will then be able to guarantee that
all queues become empty at the same time. This is exactly the time when total exchange
is completed, and condition (3) will have been satisfied.

In order to describe algorithms with a uniform behavior, we need the following notation.
Let m,,(v,) be the message of node v, (source) meant for node v, (destination). For an
automorphism o € II(G), let o(m,,(v,)) be the message of node o(v,) destined for node
o(vy), i.e.

(M, (v)) € Mo, (o(vy)).
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Finally, let @) be a set of messages. We define

0(Q) = {o(mu,(v) | mu,(v,) € Q.

Definition 2 Let G be a Cayley graph and let %(G) be a set of automorphisms that
satisfy (1). A total exchange algorithm A = (A,,...,A,,_,) where A, = (f,.,w,.),
1 = 0,1,...,n — 1, will be called node-invariant if for any message queue () and any

message m it satisfies

fu(00(@)) = 0u,(fu(Q))

wy (00, (m)) = oy, (wy, (m)).

Lemma 3 If Q,,(t) is the queue of node v; at timet, i = 0,1,...,n — 1, then any node-
invariant algorithm guarantees that

Qu, (t) = 00,(Qu, (1)),
for allt > 0.
Proof outline: The proof is by induction on ¢. It easily holds for t = 0. Assuming that it
holds for some t > 0, for time ¢ + 1 we proceed as follows. From the induction hypothesis
and the definition of node-invariant algorithms, the following conclusion is made: if ()
is the message sent by vy and v,(,) is the neighbor of vy to which this message was sent,
then

My) = O, (Maur)); (5)

Usw) = Ou;(Us(on)) (6)

is the message and the neighbor selected by v;. Lemma 2 applies to show that if v, () is

the neighbor from which vy receives a message then

Up(v;) = Ow; (UT‘(UO)) (7)



is the unique neighbor from which v; receives a message. Moreover, if m,.,,) is the message
received by v;, it is seen that

Ma(v;) = Ov,(Mr(ug))- (8)
If the destination of m,(,,) is node vy, then from (8) it is seen that the destination of My (v;)
is node v;. Conversely, if m,(y,) is not meant for vy then m,(,,) is not meant for v;. In the

second case (the first case is treated similarly), the incoming message joins the message

queue and

Quo(t + 1) = Quo (1) U{mr(wo) } \ {mswn) }»
where ¢\’ is the set-theoretic difference. Using (5) — (8), it is derived that @, (t + 1) =
00 (Qunlt + 1)), 0

Lemma 4 If node vy never deroutes a message then the same is true for every other node

vi,1t=12,...,n—1.

Proof outline: If at some time ¢ node vy selects message m,,, (vy) out of its queue and
sends it to some neighbor v,, then any node v; selects message o,,(m., (v,)) and sends it to
neighbor o, (v,) as we have already seen (equations (5)—(6)). If vy does not deroute then
dist(vy, vy) = dist(vs, v,) + 1. Because automorphisms preserve distances [5], we must have
dist(v; = oy, (v),04,(vy)) = dist(oy,(vs), 00, (vy)) + 1 and o,,(v,) indeed lies on a shortest

path from v; to o,,(v,). O

Theorem 1 Any node-invariant algorithm for which wq selects shortest paths is an optimal

total exchange algorithm for Cayley graphs.

Proof outline: From Lemma 3 it is seen that all nodes have the same queue size at
any step. Thus all nodes become idle (all queues are empty, hence total exchange is
completed) at the same time. From Lemma 4 no message is derouted if wy selects shortest
paths. Consequently, both conditions (3) and (4) are satisfied and the algorithm solves the
problem optimally. O

Summarizing, we just showed that there exists a class of algorithms, called node-

invariant algorithms, which are able to solve the total exchange problem optimally in



any Cayley network. Most reasonable algorithms, such as furthest-first, closest-first, etc.
schemes are valid candidates, as long as they do not stay idle when a queue contains mes-
sages and they are replicated “consistently” at all nodes in the network. In the next section
we provide a particularly simple node-invariant algorithm and we give a complete example

in the context of hypercubes.

6 A simple node-invariant algorithm

Assume that we have an algorithm W which takes a message, looks at its destination
and picks a neighbor of vy which lies on a shortest path from vy to the destination of the
message. It is always possible to construct such an algorithm W for any network, e.g. using
something like a table look-up procedure. More efficient schemes of course are possible if

the structure of the network is known.

Ezxample:

In a ring R,, we can have

vy ify<n/2
W(m., (vy)) = .
U1 otherwise
(nodes v and v,, 1 are the two neighbors of node vy). O

Let us treat a message queue as a set of messages that behaves as a FIFO queue. At

node vy we initially sort destinations in any desired order. For instance,

Quo(0) = {mug (1), M (V2), - -, Mg (Vn—1) }-

Suppose that the right end is the head of the FIFO queue and the left end is its tail.
Departing messages will leave from the head of the queue. Arriving messages will join
at the tail of the queue as long as they are not destined for the current node; otherwise

they are immediately forwarded to the local processor. We have to guarantee that initially

Q.. (0) is equal to 0,,(Qy,(0)), so we let

Q’Ui(o) = {mvi(a’l’i (Ul))? mvi(avi (02))7 s 7m1’i(avi (Un—l))}-



A,: (t=0,1,...,n—1)
At t =0 set
Qur = {10 (00(00)), s (002, - 20, (00 (o))
and let
[0, (Qu,):  select the message at the head of the queue @,,,
wy,(m):  if m = f,,(Q,,), select neighbor o,, (W(Uil(m))),

Figure 1: An optimal total exchange algorithm for Cayley networks. The queues are FIFO.
Messages join at the left end and depart from the right end of the queue.

The local algorithm A, = (f,,,w,,) is defined as follows:
[0 (@) : select the message at the head of the queue @,

and it is trivial to see that f,.(0,.(Q)) = 0,.(fu,(Q))-
Finally, let 0=! be the inverse mapping of o € II(G). The existence and the uniqueness

of 07! is guaranteed by the fact the II(G) is a group. Given W we define

w,,(m) :  for message m select neighbor o, (W(o_l(m))).

v;

It can be shown that w,,(o,,(m)) = o,,(w,,(m)), for any message m.
In summary, the algorithm shown in Fig. 1 is, based on Definition 2, node-invariant.
Therefore, it is an optimal total exchange algorithm for any Cayley network, according to

Theorem 1.

6.1 An example in hypercubes

To illustrate the theory developed in the previous sections we will construct an algorithm
for hypercubes, based on the algorithm in Fig. 1. An optimal algorithm was given in [4,
pp. 81-83] but is not in explicit form, and it is based on a rather involved algorithm for the
multiport model (where a node may send messages to all its neighbors simultaneously).
Let @ be the exclusive-or (addition modulo 2) operation. If the binary representation

of zis (z4-1,...,21, %) then the bitwise exclusive-or operation, @y, is defined as
T @y Y= (Tao1 @ Ya-1,---,T1 D Y1, To D Yo)-
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A (1=0,1,...,n—1)
At t =0 set
Qi = {mi(i @y 1),mi(i @, 2),...,mi(i & (n — 1)) }.
At any step t > 0,
e select the message at the head of Q; (say m,(y))
e send it to node i @) 2¥ where k is the leftmost

non-zero bit position of ¢ @y y.

Figure 2: An optimal total exchange algorithm for d-dimensional hypercubes. The standard

e-cube routing paths are followed at every transmission.

Dropping ‘v’ from the name of node v;, a hypercube @, has node set V = {0, 1,...,2¢—1}.
A node i has neighbors i @; 2°, i @, 21, ..., i @, 297 1. The following is an automorphism

of the hypercube [12] that maps node 0 to node i:
oi(z) =1i@ . (9)
Because of the associativity of exclusive-or, it is seen that
Toi(a)(7) =1 @b a By @ = 04(0a(2)),

for any node a, so that the set of automorphisms given by (9) for i = 0,1,...,2% —1 satisfy
(1). Because i @ i = 0, it is seen that o; ' = o;. Finally, it is known that if in the binary
representation of y, v, = 1 for some k then neighbor 2* of node 0 lies on a shortest path
from 0 to y, that is W(m,(y)) = 2*. Usually, k is selected to be the leftmost non-zero
bit position of y in order to comply with the standard e-cube routing. Consequently, the

algorithm of the last section takes the simple form shown in Fig. 2.

7 Discussion

We considered the total exchange problem under the single-port model in the setting of
Cayley graphs. It was shown that as long as every node sends a message at every step and

the message is not derouted, the optimal completion time is guaranteed. A particular type
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of algorithms, which we named node-invariant algorithms, always satisfy these optimality

conditions and hence constitute optimal solutions to the total exchange problem.

The only requirement for our arguments to work was that the network possesses a set

of isomorphisms that satisfy (1). In any network which has this property (Cayley graphs

do) node invariant algorithms can be defined and utilized for the total exchange problem.

We would like to see what other networks, apart from Cayley ones, possess property (1).

Is (1) satisfied in any node symmetric network?

A detailed exposition of this material is available in [9] and can be obtained through

the World Wide Web at http://www-lapis.uvic.ca.
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