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Abstract

Multinode broadcasting, an important collective commu-
nication problem, involves simultaneous broadcastings
from all the nodes in a network. In this work we present
algorithms for the minimum-time solution of the problem
in packet-switched networks that follow the single-port
model. In particular, we construct a general algorithm
for the solution of the problem in arbitrary multidimen-
stonal networks and provide conditions that ensure its
optimality.

1 Introduction

The advent of distributed-memory multiprocessors has
spawned an increasing amount of research in informa-
tion dissemination problems. Given a network of pro-
cessors (or nodes) where some of them own pieces of
information, the problem is to spread the information to
a group of recipients using the links of the network. The
term ‘collective communications’ has been coined to sig-
nify the fact that such problems involve more than two
nodes.

Among the variety of situations that can arise in prac-
tice (e.g. in parallel numerical algorithms [2]) broadcast-
ing and multinode broadcasting intrigued the research
community as early as the 1950’s [7]. In broadcasting
there is one node that owns a piece of information (here-
after called ‘message’ or ‘packet’) and needs to send it to
the other nodes in the network. Multinode broadcasting,
which is the subject of this paper, involves simultaneous
broadcastings from all nodes, that is, every node has to
send a single message to all the other nodes in the net-
work.

Two surveys on collective communication problems,
including multinode broadcasting, were given in [7, 6].
Multinode broadcasting is also known as all-to-all broad-
casting and gossiping. Traditionally, though, the term
‘gossiping’ implies certain assumptions about the com-
munication cost. In particular, it is assumed that when-
ever two neighboring nodes communicate (known as a
‘call’) they can exchange any number of packets in one

time unit. Such a model is not suited for our purposes
here; we are interested in obtaining the minimum pos-
sible time needed to solve the problem, instead of the
minimum number of calls. Clearly, in practice the more
packets two nodes exchange the more the time delay will
be. As a consequence, we will make the more realistic
assumption that in one time unit a node can only send
one packet.

We consider packet-switched networks that follow the
constant communication paradigm [6] where: (a) com-
munication links are bidirectional, (b) a message requires
one time unit (or step) to be transfered between two
nodes and (c) only adjacent nodes can exchange mes-
sages. Furthermore, nodes will be assumed to have
single-port capabilities, that is, a node can only com-
municate with only one neighbor at a time. Under such
a scheme two basic possibilities arise:

e the SAR model where a node can send a message
and simultaneously receive a message in a step

e the SOR model where a node can send a message to
or receive a message from a neighbor but not both
simultaneously.

Notice that in the SAR model a node may send a message
to some neighbor but receive a message possibly from
a different neighbor. This is more general than the so-
called ‘telephone’ model where message transmission and
reception occurs to/from the same neighbor. The latter
was assumed recently in the work of J.-C. Bermond et
al [1]. The SOR model is also known as the ‘telegraph’
model.

We study the multinode broadcasting problem for
both models since they yield different solutions. For
each of the models we derive simple lower bounds on
the time needed to complete a multinode broadcasting
operation. We then proceed to construct a general al-
gorithm that solves the multinode broadcasting problem
in any multidimensional (or cartesian product) network
in a modular way. Such networks are probably the most
popular as is evident from their utilization in commer-
cial parallel machines (e.g. Cray T3D, Intel Paragon).
Assuming we are given algorithms for each of the di-
mensions, we show how to construct an algorithm for



the multidimensional graph. We also prove that if the
algorithms for each of the dimensions are time-optimal,
then the derived algorithm is also optimal. An analogous
theory was previously developed for the total exchange
problem [5].

2 Lower Bounds

Let us consider a network (or graph) G = (V, E) where V
is the node (or vertex) set and F is the link (or edge) set,
and let n = |[V|. J.-C. Bermond et al [1] derived quite
tight bounds for the time needed to perform multinode
broadcasting in arbitrary networks, using the telephone
model. We derive here similar, and simpler bounds for
the SAR and SOR models.

In the multinode broadcasting problem each node will
receive n — 1 messages, one from each of the other nodes.
Under the single-port assumption messages at any node
can only arrive one by one. If Tsar, T'sor are the times
needed to perform multinode broadcasting in G under
the corresponding models, we have the lower bound of:

Tsar,Tsor >n—1 steps. (1)

For the case of SOR model the lower bound can be
further tightened. Each of the n broadcast messages
must be received by n — 1 nodes. In other words, each
message implies n — 1 receptions. For the receptions to
occur, there must clearly occur n — 1 transmissions, too.
In total, for all n messages there will occur:

n(n — 1) receptions and n(n — 1) transmissions.

If the number of nodes is even then at most n actions
(receptions or transmissions) can occur at each step. To
make it clearer, since no node is allowed to simultane-
ously receive and transmit messages, at most half of the
nodes can send a message and at most half of the nodes
can receive a message. As a result, at most n/2 trans-
missions and n/2 receptions may be had at each step.
This gives the lower bound of:

Tsor > 2(n - 1). (2)

If n is odd then at most n — 1 actions (receptions or
transmissions) can occur at each step, that is, one node
can not participate at all, giving the lower bound of:

T34, > 2n. (3)

3 Multinode Broadcasting in
Multidimensional Networks

In this section we are going to develop a general multin-
ode broadcasting algorithm for any multidimensional

graph. Although simple, the algorithm will be shown
to be optimal if certain conditions are met.

Given k graphs G; = (V;, E;), i = 1,2,...,k, their
(cartesian) product is defined as the graph G = Gy x
-+- X G = (V, E) whose vertices are labeled by a k-tuple
,vk) and
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We will call such products of graphs multidimensional
graphs and G; will be called the ith dimension of the
product. The ith component of the address tuple of
a node will be called the ith address digit or the ith
coordinate. The definition of E above in simple words
states that two nodes are adjacent if they differ in exactly
one address digit. Their differing coordinates should be
adjacent in the corresponding dimension. An example is
given in Fig. 1.
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Figure 1: A two-dimensional graph

Hypercubes are products of two-node linear arrays (or
rings), tori are products of rings. If all dimensions of the
torus consist of the same ring, we obtain k-ary n-cubes
[4]. Meshes are products of linear arrays [8]. Generalized
hypercubes are products of complete graphs [3]. Multi-
dimensional graphs have n = ming---ng nodes, where
n; = |V;| is the number of nodes in G;, i =1,2,... k.

It will be convenient to use the don’t care symbol ‘+’ as
a shorthand notation for a set of addresses. An appear-
ance of this symbol at an element of an address tuple rep-
resents all legal values of this element. In the last exam-
ple, (a,*) = {(a,1),(a,2),(a,3)}, (x,1) ={(a,1),(b,1)}

while (%, %) denotes the whole node set of the graph.

3.1 The Algorithm

Let G = A x B. A k-dimensional network G; X --- X G,
can still be expressed as the product of two graphs by
taking A = G; and B = G3 X --- X G, so we may
consider two dimensions without loss of generality. Let



A= (VA,EA)a B = (VBaEB)a G = (VaE)a ni = |VA|7
ny = |Vg| and n = ning. Finally, let:
Va =
Ve =

{vili=1,2,...,n1}
{us|i=1,2,...,n2}.

Graph G can be viewed as ny (interconnected) copies
of A. For example, in Fig. 1 graph A x B consists of
three copies of A, where the corresponding nodes are
interconnected according to the edges in B. Let A; be
the jth copy of A with node set (*,u;), where * takes
all values in V4. Similarly, G can be viewed as n1 copies
of B, and we let B; be the ith copy of B with node set
(U,’, *)

Let us assume that there exist multinode broadcast-
ing algorithms for each of the dimensions. Our method
utilizes the algorithms for the dimensions so as to syn-
thesize an algorithm for the whole graph. In other words,
the problem of performing multinode broadcasting in
G = A x B is decomposed to the simpler problem of per-
forming multinode broadcasting in A and in B. This is
a highly desirable simplification since multidimensional
networks are quite complex structures.

Phase 1: M.B. within the copies of B

Phase 2: M.B. within the copies of A
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Figure 2: The two phases of the multinode broadcasting
algorithm

The algorithm we are going to give for G consists of
two phases, and is illustrated in Fig. 2. In Phase 1 nodes
perform a multinode broadcasting in the second dimen-
sion. Notice that because there are no nodes in common

between the copies of B what we shall describe for a
certain copy B; occurs simultaneously for the other of
copies of B, too.

Consider node (v;,u;) in B;, and let m(v;, u;) denote
its own broadcast message. When Phase 1 is complete,
this node will contain all broadcast messages from the
nodes in B;, that is, it will contain the messages of nodes
(vi,*): m(vi,u1), m(vs,ua),...,m(vi, un,). This holds
for every node in the graph. In particular, every node in
A; will contain ny messages, each one originating from a
different node. In other words, at the end of Phase 1 all
n = n1 X ny broadcast messages will have been received
by the nq nodes in A; (for all j), each node holding ns
of them.

It should now follow clearly that the way to distribute
those messages to every node in A; is through multinode
broadcastings within A;. Thus Phase 2 consists of a se-
ries of ny multinode broadcastings in the first dimension
in order for each node to broadcast the no messages it
holds.

Phase 1:
1 Do in parallel for all B;,1=1,2,...,n1
2 In B; perform multinode broadcasting;

Phase 2:

3 Forr=1,2,...,n9

4 Do in parallel for all 4;, j =1,2,...,n2

5 In A; perform multinode broadcasting with

node (v;,u;) broadcasting m(v;,u,) (¢ =1,2,...,n1);

Figure 3: The algorithm for graph G = A x B

The algorithm is summarized in Fig. 3, and is a general
solution to the multinode broadcasting problem for any
multidimensional network. If the network has £ > 2
dimensions G = G1 X - - - X G, the algorithm can be used
recursively by taking A = G; and B = G2 X --- X Gg.
Phase 1 (lines 1-2) can be performed by invoking the
algorithm with A = Gy and B = G3 X --- x G} and so
forth.

Notice that the algorithm is independent of the link
model in use. Because the two phases are executed one
after the other, and within Phase 2 the multinode broad-
castings are also executed serially, only one multinode
broadcasting operation is in effect at any step. As a
result, the whole algorithm is consistent with the link
model of the algorithms for each dimensions. For ex-
ample, if the algorithms for A and B operate on SOR
networks, so does our algorithm for G = A x B.

3.2 Optimality conditions

We proceed now to determine the time required for the
general algorithm in Fig. 3 and the conditions under
which it behaves optimally. Let T4 and T denote the




number of steps needed to perform multinode broadcast-
ing in A and B correspondingly.

Theorem 1 The multinode broadcasting algorithm for
G = A X B requires:

T =Tg +noT4 time units.

Proof. The result is straightforward: Phase 1 performs
multinode broadcasting within B; (for alli =1,2,...,n;
in parallel), taking thus time equal to T. Phase 2 per-
forms ny multinode broadcasting operations within A;
(for all j = 1,2,...,ny in parallel), each requiring T4
steps. O

Theorem 2 Under the SAR model, if multinode broad-
casting in A and B can be performed in time equal to

the lower bound of Eq. (1) then the same is true for
G=AXxB.

Proof. If T4 and T achieve the lower bound of Eq. (1)
then Ty = ny —1 and Tg = ny — 1. From Theorem 1 we
obtain:

T=(Mne—1)4na(n;—1)=nmne—1=n-1,

as required. O

Theorem 3 Under the SOR model, if both dimensions
have an even number of nodes and multinode broad-
casting in each one can be performed in time equal to
the lower bound of Eq. (2) then the same is true for
G=AxB.

Proof. If both dimensions have an even number of
nodes then by Eq. (2) we must have T4 = 2(n; —1) and
Tg = 2(n2 —1). From Theorem 1 we obtain:

T =2(ng—1)42n3(n1 — 1) =2n1ns —2=2(n—1),

which is optimal. m]

Theorem 4 Under the SOR model, if only one dimen-
sion has an even number of nodes and multinode broad-
casting in each dimension can be performed in time equal
to the lower bound of Eq. (2) or Eq. (3) then the algo-
rithm for G = A X B is optimal within two steps.

Proof. Without loss of generality assume that no is
odd and n; is even. Otherwise, we might rename the
dimensions by considering graph G = B x A which is
isomorphic to A x B. Thus, according to Egs. (2) and
(3) we must have T4 = 2(ny — 1) and Ts = 2ny. From
Theorem 1 we obtain:

T = 2ns 4 2n3(ny — 1) = 2nyne = 2n.

Since n is even, the lower bound of Eq. (2) shows that
T is suboptimal by 2 steps. O

4 Conclusion

‘We have considered the problem of multinode broadcast-
ing in packet-switched networks with single-port capabil-
ities, whereby a node can at most send and/or receive
one message at each step. We note that this is exactly
what most present-day machines are capable of. Un-
der this model, we consider the case where simultane-
ous transmission and reception is allowed at each node
(SAR) and the case where a node is only allowed to ei-
ther transmit or receive at each step (SOR).

We provided a general solution to the problem for mul-
tidimensional networks. We derived a modular method
that utilizes multinode broadcasting algorithms for each
of the dimensions. Our scheme is simple but it neverthe-
less maintains optimality always under the SAR model
and in most cases under the SOR model. An interest-
ing course of further research is the case of the SOR
model where all dimensions of the network contain an
odd number of nodes. In this setting our method cannot
maintain optimality even if multinode broadcasting in
every dimension can be performed optimally.
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