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Abstract

Total exchange (or multiscattering) is one of the important collective commu-
nication problems in multiprocessor interconnection networks. It involves the dis-
semination of distinct messages from every node to every other node. We present
a novel theory for solving the problem in any multidimensional (cartesian product)
network. These networks have been adopted as cost-effective interconnection struc-
tures for distributed-memory multiprocessors. We construct a general algorithm for
single-port networks and provide conditions under which it behaves optimally. It is
seen that many of the popular topologies, including hypercubes, k-ary n-cubes and
general tori satisfy these conditions. The algorithm is also extended to homogeneous
networks with 2* dimensions and with multiport capabilities. Optimality conditions
are also given for this model. In the course of our analysis we also derive a formula
for the average distance of nodes in multidimensional networks; it can be used to

obtain almost closed-form results for many interesting networks.
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1 Introduction

Multidimensional (or cartesian product) networks have prevailed the interconnection net-
work design for distributed memory multiprocessors both in theory and in practice. Com-
mercial machines like the Ncube, the Cray T3D, the Intel iPSC, Delta and Paragon, have
a node interconnection structure based on multidimensional networks such as hypercubes,
tori and meshes. These networks are based on simple basic dimensions: linear arrays in
meshes [16], rings in k-ary n-cubes [6] and general tori, complete graphs in generalized
hypercubes [4]. Structures with quite powerful dimensions have also been proposed, e.g.
products of trees or products of graphs based on groups etc. [23, 9, 12, 21, 26].

One important issue related to multiprocessor interconnection networks is that of infor-
mation dissemination. Collective communications for distributed-memory multiprocessors
have recently received considerable attention, as for example is evident from their inclusion
in the Message Passing Interface standard [19] and from their support of various constructs
in High Performance Fortran [13, 17]. This is easily justified by their frequent appearance
in parallel numerical algorithms [11, 14, 3].

Broadcasting, scattering, gathering, multinode broadcasting and total exchange consti-
tute a set of representative collective communication problems that have to be efficiently
solved in order to maximize the performance of message-passing parallel programs. A gen-
eral survey regarding such communications was given in [10]. In total exchange, which
is also known as multiscattering or all-to-all personalized communication, each node in a
network has a distinct message to send to every other node. Various data permutations oc-
curring e.g. in parallel FF'T and basic linear algebra algorithms can be viewed as instances
of the total exchange problem [3].

The subject of this work is the development of a general theory for solving the total
exchange problem in multidimensional networks. A multitude of quantities or properties in
such networks can be decomposed to quantities and properties of the individual dimensions.
For example, the degree of a node is the sum of the degrees in each of the dimensions.
We show here that the total exchange problem can also be decomposed to the simpler
problem of performing total exchange in single dimensions. This is a major simplification

to an inherently complex problem for inherently complex networks. We provide general



algorithms applicable to any multidimensional network given that we have total exchange
algorithms for each dimension. Optimality conditions are given and it is seen that they are
met for many popular networks, e.g. hypercubes, tori and generalized hypercubes to name
a few.

The results presented here apply to packet-switched networks that follow the so-called

constant model [10]. The assumptions pertaining the model we will follow are:
e communication links are bidirectional and fully duplex
e a message requires one time unit (or step) to be transferred between two nodes
e only adjacent nodes can exchange messages.

Another parameter of the model is that of port capabilities. Depending on whether a
node can communicate with one or all of its neighbors at the same time unit, two basic

possibilities arise:

Single-port: a node can send at most one message and receive at most one message at each

step.
Multiport: a node can send and receive messages from all its neighbors simultaneously.

As discussed in [10], the above assumptions constitute the standard model when examining
theoretical aspects of communications in packet-switched networks. Furthermore, results
and conclusions under this model can form the basis of arguments for other models, such
as the linear one which also quantifies the effect of message lengths. Many recent works
focus exclusively on wormhole-routed networks (an excellent survey on collective commu-
nications for such machines was given in [18]). However, we believe that studies should
not be limited to one particular type of architecture: “it is important to consider several
types of communication models, given the broad variety of present and future communica-
tion hardware” [2]. In addition, since a circuit-switched or wormhole routed network can
emulate a packet-switched network by performing only nearest-neighbor communications,
the results also constitute a reference point for methods developed for the former type of

networks.



Algorithms to solve the total exchange problem for specific networks and under a variety
of assumptions have appeared in many recent works, mostly concentrating in hypercubes
and two-dimensional tori (e.g. [24, 15, 2, 25]). Under the single-port model we know of
two optimal algorithms, in [3, pp. 81-83| for hypercubes, and in [20] for star graphs. In
contrast, our results are applicable not only to one particular structure but rather provide
a general procedure for solving the problem in any multidimensional network.

This paper is organized as follows. We introduce formally multidimensional networks in
the next section and we give some of their properties related to our study. Section 3 gives
lower bounds on the time required for solving the total exchange problem under both port
assumptions. In the same section we derive a new formula for the single-port bound as
applied to the networks of interest. The result has its own merit as it also provides almost
closed-form formulas for the average distance in networks for which no such formula was
known up to now. In Section 4 we concentrate on single-port networks. We develop a
total exchange algorithm and we give conditions under which it behaves optimally. We
also review known results about simple dimensions and conclude that our method can be
optimally applied to hypercubes, k-ary n-cubes and other popular interconnects. In Section
5 we modify the algorithm and adapt it to the multiport model. The extension works for
networks which have 2% (k > 1) identical dimensions (homogeneous networks). Again, we
provide optimality conditions and observe that they are satisfied for a number of interesting

topologies. The results are summarized in Section 6.

2 Multidimensional Networks

Let G = (V, E) be an undirected graph! [5] with node (or vertex) set V and edge (or link)
set F. This is the usual model of representing a multiprocessor interconnection network:
processors correspond to nodes and communication links correspond to edges in the graph.
The number of nodes in G is n = |V|. An edge in E between nodes v and u is written
as the unordered pair (v,u) and v and u are said to be adjacent to each other, or just

neighbors.

!The terms ‘graph’ and ‘network’ are considered synonymous here.



A path in G from node v to node u, denoted as v — u, is a sequence of nodes v =
Vo, V1, - - -, Vg = u, such that all vertices are distinct and for all 0 < ¢ < ¢, (v;,v;41) € E.
We say that the length of a path is £ if it contains ¢ vertices apart from v. The distance,
dist(v,u), between vertices v and w is the length of a shortest path between v and w.

Finally, the eccentricity of v, e(v), is the distance to a node farthest from v, i.e.

e(v) = max dist(v,u).

The maximum eccentricity in G is known as the diameter of G.
Given k graphs G; = (V;, E;), i = 1,2, ...k, their (cartesian) product is defined as the
graph G = Gy X --- X Gy, = (V, E) whose vertices are labeled by a k-tuple (vq,...,v;) and

V:{(vl,...,vk)|vz~ EVQ,z’zl,...,k}
E = {((vl,...,vk),(ul,...,uk)) | E'j s.t. (vj,u]-) - Ej and V; = U; fOI‘ a.ll’l,#j}

We will call such products of graphs multidimensional graphs and G; will be called
the ith dimension of the product. The ith component of the address tuple of a node will
be called the ith address digit or the ith coordinate. The definition of E above in simple
words states that two nodes are adjacent if they differ in exactly one address digit. Their
differing coordinates should be adjacent in the corresponding dimension. An example is
given in Fig. 1. Dimension 1 is a graph consisting of a two-node path with V; = {a, b}
while dimension 2 consists of a three-node ring with V5 = {1,2,3}. Their product has node
set

v ={(a,1),(0,2),(a,3),(b,1),(5,2), 5,3) }.
According to the definition, node (a, 1) has the following neighbors: since node a is adjacent
to node b in the first dimension, node (a, 1) will be adjacent to node (b, 1); since node 1 is
adjacent to both nodes 2 and 3 in the second dimension, node (a, 1) will also be adjacent
to nodes (a,2) and (a, 3).

Hypercubes are products of two-node linear arrays (or rings), tori are products of rings.
If all dimensions of the torus consist of the same ring, we obtain k-ary n-cubes [6]. Meshes
are products of linear arrays [16]. Generalized hypercubes are products of complete graphs
[4]. If all dimensions G;, i = 1,2,...,k, are identical then the network is characterized as

homogeneous.



Multidimensional graphs have n = |V;||V3| - - - |Vi| nodes, where |V;| is the number of

nodes in G;, i = 1,2,... k. It is also known that if dist;(v;,u;) is the distance between v;
and u; in G; then the distance between v = (vq,...,v) and u = (uq,...,ux) in G is
k
dist(v,u) =Y _ dist;(vi, ;). (1)

i=1

It will be convenient to use the don’t care symbol ‘x’ as a shorthand notation for a set
of addresses. An appearance of this symbol at an element of an address tuple represents
all legal values of this element. In the previous example, (a,*) = {(a,1),(a,2),(a,3)},

(x,1) = {(a,1),(b,1)} while (x,*) denotes the whole node set of the graph.

3 Lower Bounds for Total Exchange

In the total exchange problem, a node v has to send n — 1 distinct messages, one for each
of the other nodes in an n-node network. Let us first assume that the single-port model
is in effect. If there exist ng nodes in distance d from v, where d = 1,2,...,e(v), then the

messages sent by v must cross
e(v)
s(v) = dng (2)
d=1

links in total. For all messages to be exchanged, the total number of link traversals must

be
Se =Y s(v).

veV

The quantity s(v) is known as the total distance or the status [5] of node v.

Every time a message is communicated between adjacent nodes one link traversal occurs.
Under the single-port model nodes are allowed to transmit only one message per step, so
that the maximum number of link traversals in a single step is at most n. Consequently, we
can at best subtract n units from Sg in each step, so that a lower bound on total exchange
time is

TE, > i—G — AS(G). (3)

In other words, total exchange under the single-port assumption requires time bounded

below by the average status, AS(G), of the vertices.



For multiport networks tighter bounds are obtained through cuts of the network. Par-
tition the vertex set V' in two disjoint sets V3 and V5 such that V3 UV, = V. Let Cy,y, be
the number of edges in E joining the two parts, i.e. edges e = (v, u) such that v € V; and
u € V5. Messages from nodes in V; destined for nodes in V, must cross these Cy,y, edges.
The total number of such messages is |V;||V2|. Since only Cly,y, messages are able to pass
from V4 to V; at a time, we obtain the following lower bound for total exchange time:

TEyp > WAVl (4)

Cvivy
We are of course interested in maximizing the fraction in the right-hand side by selecting V}
and V5, appropriately so that the tightest possible bound results. In many cases a bisection

of the graph is the most appropriate choice, although any sensible partition will yield quite
tight bounds.

3.1 Status in multidimensional networks

In the course of our analysis on the single-port model we will need to compare the time
needed for total exchange with the lower bound of (3). We present here a formula for the
status and the average status of vertices in multidimensional graphs, as required by (3).

The results are based on the status of vertices in individual dimensions.

Theorem 1 Let G = Gy X G X - -+ X Gy. If s;(v;) is the status of v; in G;, i =1,2,...,k,

then the status of v = (v1,vs,...,0;) in G is

Proof. The status of node v can be calculated through (2) or by using the equivalent

formula:

s(v) =Y dist(v,u), (5)

ueG
where dist(v,u) is the distance between v and u. Hence, the status of v; in G; can be

written as

si(v)) = > dist;(vi, u;). (6)

u; €G;4

7



We know that in a multidimensional network the distance between two vertices is equal
to the sum of distances between the corresponding coordinates (Eq. (1)). Consequently,

from (5) we obtain

s(v) = oo dist((ve,- .-, vk), (w1, .- uk))

(U1 geensug ) EG

= Y Y Y disti(vi,w)

u1€G1 ur€EGE =1

_ i{ )T D SIS disti(vi,ui)}

i=1 *u1€G1 u;—1€G;—1 ui41€G41 up€Gy u; €G;

©) i{ Yooy Yy % Si(vi)}

=1 “u1€G1 ui—1€Gi—1 ui+1€G+1 ur€EGy
k
n
= —si(v;
;{|W| Z( 1)}7

as claimed. O

The quantity s(v)/(n—1) is known as the average distance of node v, giving the average
number of links that have to be traversed by a message departing from v. It is an important
performance measure of the network since under uniform addressing distributions it is
directly linked with the average delay a message experiences before reaching its destination

[22]. The following corollary follows directly from Theorem 1:

Corollary 1 Let G = Gy X Gg X -+ - X Gg. If AD;(v;) is the average distance of v; in Gj,

i=1,2,...,k, then the average distance of v = (v1,vs,...,vx) in G is
AD(e) = 31— ) ADy(v)
V) = — - — i (v;).
n—1:= Vil

Corollary 1 can be used to calculate the average distance of vertices in many graphs
for which no closed-form formula was known up to now. As an example, in generalized
hypercubes [4] each dimension is a complete graph with m; vertices, i = 1,2,...,k. In a

complete graph all nodes are adjacent to each other, so that AD;(v;) = 1. Consequently,



the average distance in generalized hypercubes is

In [4] it was possible to derive a formula only for the case where all m; are equal to each
other.

In the context of the total exchange problem we are interested in the average status
of the nodes in the network. Let AS(G;) be the average status of G;, defined in (3) as
AS(G;) = Xy,eq, si(vi)/|Vi|. We have the following corollary.

Corollary 2 Let G = G1 X Gy X -+ X Gy. If AS(G;) is the average status of G;, i =
1,2,...,k, then the average status of G is given by

k. AS(G))

AS(G) :n; Vi

Proof. From Theorem 1 we obtain

— Si(’Ui)
ZS(U) = Z Z Vil

_ ni DY Y oYY 8|‘(;)|)

i=1v1€G1 vi—1€Gi—1 vi+1€Gi1 v €G v;€G;

S0 5 SRS SN SRR ST (e

i=1vi€G1 v;—1€G;—1 vi+1€Gi+1 v E€Gy
Z A

which, divided by n, gives the required result. O

4 Single-port Algorithm

Let G = A x B. A k-dimensional network G; X --- X G} can still be expressed as the
product of two graphs by taking A = G; X --- X G}_1; and B = G}, so we may consider



two dimensions without loss of generality. Let A = (Va, E4), B = (Vg, Eg), G = (V, E),

n1 = |Va|, ng = |Vp| and n = nyn,. Finally, let

VA = {’U,’lizl,2,...,n1}
VB = {u,|z:1,2,,n2}

Graph G consists of ny (interconnected) copies of V4. Let A; be the jth copy of A with
node set (*,u;), where * takes all values in V4. Similarly, G can be viewed as n; copies of
B, and we let B; be the ith copy of B with node set (v;, *). An example is shown in Fig. 2.

We will develop the basic idea behind our algorithm through the example in Fig. 2.
Consider the top node of A;. This node belongs to A; as well as B;. All nodes in A; have,
among other messages, messages destined for the rest of the nodes in A;. These messages
can be distributed by performing a total exchange within A;. In addition, nodes in A; have
messages for all nodes in Ay, A3 and A4. Somehow, these messages have to travel to their
appropriate destinations. What we will do is the following: all messages of the top node
of A; meant for the nodes in Ay will be transferred to the top node of As. All messages of
the middle node of A; destined for the nodes in A, will be transferred to the middle node
of As. Similar will be the case for the bottom node of A;. Once all these messages have
arrived in Aj, the only thing remaining is to perform a total exchange within A, and all
these messages will be distributed to the correct destinations.

Next, nodes of A; have to transfer their messages meant for A3 to nodes of As. The
procedure will be identical to the procedure we followed for messages meant for A,. Finally,
the remaining messages in A; are destined for A4 and one more repetition of the above
procedure will complete the task. Notice that what we did for messages originating at
nodes of A; has to be done also for messages originating at the other copies of A, i.e. A,,
Az and A4. We are now ready to formalize our arguments.

We are going to adopt the following notation: 1, u;)(vk, w) Will denote the message
of node (v;, u;) destined for node (vy,w;). We will furthermore introduce the ‘*’ symbol to
denote a corresponding set of messages. For example, my, 4,)(*,%;) denotes all messages
of node (v;, u;) destined for the nodes of A;, and my,, ) (vk, w;) denotes all messages of B;
destined for node (vg,w;). Similarly, m,, ) (*, *) denotes all messages of (v;,u;). Notice

that this last set normally includes myy,u,)(vi, u;) since (*,*) covers all nodes. Since no
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node sends messages to itself, it is always implied that from any set of messages, we have
removed every message whose source and destination are the same.

Consider the set of messages m ) (*, *). This set represents our total exchange problem:
every node has one message for every other node. Next consider the set m(. ;) (*,u; ).
This is the set of messages of nodes in A; destined for the other nodes in A;: they can be
distributed by a total exchange operation within A;. Finally, consider the set 1y, ) (*, ux)
of node (v;,u;) meant for the nodes of A;. This set will be transferred to node (v;, uy).
Thus, after such transfers, node (v1,ux) will have received my, u,)(*, ux), node (vs, u) will
have received M (y,,4;)(*,ur), and so on. Notice that every node in A will have received
messages meant for every node in Ai: these messages clearly can be distributed to the
appropriate destinations through a total exchange operation within Ay.

To recapitulate, we can solve the total exchange problem in G = A x B using the

algortihm shown below.

1 For every it =1,2,...,m
2 Forevery j=1,2,...,n9
3 For every k =1,2,...,n9, k #£ i

4 Transfer messages m(y, u,)(*, ux) to node (vi, ug);

5 For every k=1,2,...,n2 !
6 Do in parallel for all 4;, j =1,2,...,n2
7 In A; perform total exchange of messages m, ., )(*, u;)

(messages m(y, u,)(*, u;) reside in node (v;,u;));

First we perform all the transfers we described above and then we perform the total
exchanges within each A;. The transfers correspond to lines 1-4. After they are completed,
every node (v;, u;), for every 4, j, will have received all messages meant for the jth copy of
A originating at nodes (v;,ux), k = 1,2,...,n9, i.e. all messages my, u,)(*,u;). Lines 5-7
of the algorithm distribute these messages to the correct vertices of A; in ny rounds. In
the kth round a total exchange is performed and the exchanged messages have originated
from Aj.

The algorithm solves the total exchange problem but lines 1-4 do not show how the
transfer of messages is exactly implemented. First of all, there may exist path collisions

between transfers from (v;,u;) to (v;, ux) and transfers from (vy,u;) to (v, ux), @ # 7', if
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we try to do them simultaneously. A straightforward way of avoiding collisions and at the
same time parallelizing the transfers (line 1) is the following: when transferring messages
from (v;, u;) to (v;,ux) we only allow use of links in the second dimension. In other words,
the allowable paths (v;,u;) — (v;,ux) involve only nodes (v;, *) of B;. Then if vy # v;,
paths (v;,u;) = (v;,ux) and (vy,u;) = (vir, ux) have no node in common. Consequently,

lines 1-4 can be rewritten in the improved form:

1 Do in parallel for all v; € V4 (i=1,2,...,nq)

2 Forevery j=1,2,...,n9

3 For every k =1,2,...,n9, kK # 1

4 Transfer messages m v, ;) (*, ux) to node (v, uy)

using links in B;;

We may still improve matters by further parallelizing lines 1-3. Within B; we need to
transfer messages m(v“uj)(*,uk) from every vertex u; to every other vertex uj. In Table 1
we list the messages to be transferred by some vertex (v;,u;) of A;. Notice that we do
not have to transfer messages meant for A; anywhere, so the jth column of the table is
actually unused (it will only be used for a total exchange within A;). Column £ contains
all messages of (v;, u;) meant for Ay, to be transferred first to node (v;, ug).

Instead of transferring the messages column by column (i.e. transfer all messages in
column 1 to Ay, then all messages in column 2 to A, etc.) we transfer them horizontally
(row by row). The batch R, of messages in row r contains all messages my,,u,)(vr, *). We
will transfer all of them, except of course for my, ) (vr,%;) in column j which is meant
for a node of A;. Let us consider again the network in Fig. 2 and assume that the bottom
nodes of Ay, Ay, A3 and A4 want to transfer their first batch, R;. The batch of the bottom
node of A; contains one message for each of the bottom nodes of A5, A3 and A,4. Similarly,
batch R; for the bottom node of A; contains one message for the other three nodes in
question. It should be immediately clear that these messages constitute an instance of the
total exchange problem in Bj: every node has one message for every other node in Bj.

In general, when every node (v;,u1), (vi,u2), ..., (V;,Un,) in B; transfers its own batch
R, of Table 1, a total exchange within B; can distribute the messages appropriately. Con-

sequently, all rows of Table 1 of every node will be transferred where they should by
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performing n; total exchanges in B;: at the rth exchange all nodes (v;, %) transfer their rth
batch of messages (rth row of the corresponding tables).

Based on the above discussion, and recalling that transfers within B; do not interfere
with transfers within By, ¢/ # i, we may express our total exchange algorithm in its final
form, Algorithm A1, appearing in Fig. 3. Algorithm A1 is a general solution to the total
exchange problem for any multidimensional network. If the network has £ > 2 dimensions,
G = Gy X --- X G, Algorithm A1 can be used recursively, by taking A = Gy X --- X Gj_;
and B = Gj. The total exchanges in A; (lines 4-6) can be performed by invoking the
algorithm with A =Gy X --- X Gx_o and B = G}_1 and so forth.

The algorithm is in a highly desirable form: it only utilizes total exchange algorithms
for each of the dimensions. The problem of total exchange in a complex network is now
reduced to the simpler problem of devising total exchange algorithms for single dimensions.
For example, we are in a position to systematically construct algorithms for tori, based on
algorithms for rings.

We now proceed to determine the time requirements of the algorithm and the conditions

under which it behaves optimally.

4.1 Optimality conditions

It is not very hard to calculate the time required for Algorithm A1l. This is because it is
written in a form suitable for the single-port model: every node participates in one total
exchange operation at a time. When each total exchange is performed under the single-port

model, in effect no node sends/receives more than one message at a time.

Theorem 2 If single-port total exchange algorithms for graphs A and B take Ty and Tpg
steps correspondingly then Algorithm A1 for G = A x B requires

T = anB + TZQTA
time units.

Proof. The result is straightforward: lines 1-3 perform n,; total exchanges within B; (for
all i = 1,2,...,n; in parallel), each requiring Tp steps. Similarly, lines 4-6 perform n,

total exchanges within A; (for all j = 1,2,...,ny in parallel), each requiring T4 steps. O
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Corollary 3 If G = G; X G2 X - -+ X G}, and a single-port total exchange algorithm for G;
takes T; time units, 1 = 1,2,...,k, total exchange in G under the single-port model can be

performed in

steps, where n = |Vi||Va] -« - |Vi|.

Proof. The proof is by induction. If we only have one dimension then the corollary is
trivially true. Assume as an induction hypothesis that it holds for up to £ — 1 dimensions.
Then we must have ——

=" L
where 7" is the time needed for total exchange in G' = G; X --- X Gyx_1 and n' =

Vil - |[Vie1| = n/|Vi|. If we let A = G’ and B = Gy, n1 = n' and ny = |Vi|, Theo-

rem 2 gives
T = n'Tp+ |Vi|T

k-1
n T

= —T Vi
Vi Vi 2

- Z|V|

as required. O

Theorem 3 If single-port total exchange for every dimensioni=1,2,...,k of G = G X
Go X -++ X Gy can be performed in time equal to the lower bound of (3) then the same is

true for G.

Proof. If in G; total exchange can be performed in time equal to the lower bound of (3)
then T; = AS(G;). From Corollary 3, we must have
kL AS(GY)
T=n 2,
2 Vil

=1

which, combined with Corollary 2, shows that 7" = AS(G) and the algorithm is thus

optimal. O
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The last theorem provides the main optimality condition for Algorithm Al. If we have
total exchange algorithms for every dimension and these algorithms achieve the bound
of (3) then Algorithm A1l also achieves this bound. For example, in hypercubes every
dimension is a two-node graph. Trivially, in a two-node graph the time for total exchange
is just one step, equal to the average status. Thus the optimality condition is met and the
presented algorithm is an optimal algorithm for single-port hypercubes.

More generally, we have shown elsewhere [8] that there exist algorithms that need time
equal to (3) for any Cayley [1] network. Consequently, the optimality condition is met
for arbitrary products of Cayley networks. Rings and complete graphs are examples of
Cayley networks and thus Algorithm A1l solves optimally the total exchange problem in

k-ary m-cubes, general tori and generalized hypercubes.

5 Multiport Algorithm

In this section we will modify Algorithm A1l to work better under the multiport model.
In its present form, Algorithm A1l is not particularly efficient under this model. This is
because lines 4-6 are executed after lines 1-3 have finished. During execution of lines 1-3
only edges of the second dimension (B) are used while lines 46 use only edges of the first
dimension (A). In the multiport model we try to keep as many edges busy as possible and
the behavior of Algorithm A1l does not contribute to that effect. We seek, consequently, to
transfer messages in both dimensions simultaneously. In other words we will reconstruct
the algorithm such that lines 1-3 overlap in time as much as possible with lines 4—6.

The theory we present here applies to homogeneous networks. We recall that a mul-
tidimensional network is homogeneous when all its dimensions are identical. Thus, G =
H x H x---x H= H* for some graph H. We will only consider the two-dimensional case,
i.e. G = H?, but it will also be seen that the algorithm we derive is applicable when the
dimensionality of the graph is in general a power of 2, i.e. G = H 2",

Let G=Ax B = (V,E) where A= B = H. Also, let n = |Vy| that is, G has n? nodes.
The network in Fig. 4 will be used as an example for our arguments. For node (1,1) we
give the messages it will distribute in Table 2. The messages in the first column are meant

for the other nodes in A;. A total exchange within A; may thus begin immediately to
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distribute such messages. Since this total exchange uses only links in the first dimension,
node (1,1) is also available to participate in some total exchange in the second dimension
(i.e. in By). In a general network, node (v;,u;) in A; can participate in a total exchange
within B; as soon as the first total exchange in A; starts. Within A; the transferred
messages are My, ;) (*,;), as given in column j of Table 1.

Let us see what messages will be involved in the first total exchange within B;. Our
objective is the following: we want every node (v;,u;) in B; to receive n — 1 appropriate
messages so that after this total exchange in B; is done, another total exchange can be
initiated within A;. Consequently, we seek to arrange the transfers so that (v;, u;) receives
one message for each node in A;, i.e. receive messages with destinations (*,u;). Notice that
any node (v;, u;) will receive n — 1 messages through a total exchange in B;: since A; has
n nodes (including (v;,u;)), all the n — 1 receptions of (v;,u;) should be meant for nodes
other than (v;,u;) itself.

In the network in Fig. 4, we let for example node (1,1) send m1,1)(2,2). This message
will at some point be received by node (1,2) and it will provide one message for the forth-
coming total exchange in A,. If (1,2) sends m; 2)(2, 3) then node (1,3) will also be provided
with one message for total exchange in Aj. Similarly, (1,3) sends m3)(2, 1), needed by
node (1,1).

We define the following operators:

z@ny ¥ [(w+y—1)modn]+1

z6,y = [(x—y—1)modn]+ 1.

These operators work like addition/subtraction modulo n but produce numbers ranging
from 1 to n instead of 0 to n — 1, and are better suited for our purposes here. Based on
this operator and the preceding discussion, we see that one effective scheduling is to let
node (v;, u;) (for all 7 and all j) send, among other messages, message M (v, u;) (Vig, 1, Uj@,1)-
Hence, this node will also receive m(y, u;q 1)(Vig,1,%;) from node (v;, ujg,1) Which it will
use for the next total exchange in A;.

Let us see what other messages will be sent during this first total exchange in B;. In
our example it is seen that since node (1,1) decided to send m1)(2,2), it cannot send

another message to node (1,2). Thus it has to send a message to node (1,3). Since this
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node will receive m;,2)(2, 3), which covers one destination in A3, the only choice for (1,1)
is to send m1,1y(3,3). This message completes the set of messages needed by (1,3) for the
next total exchange in A3 since all other vertices in A3 are now covered. Similarly, (1,2)
and (1,3) must send m;2)(3,1) and m(,3)(3,2) and all three nodes will have a complete
set of messages, suitable for total exchanges within A;, As and As.

In general, the second message that node (v;, u;) will send is 7y, u,) (Vig,2, Uje,2). This
will provide node (v;, ujg,2) With a second message for the total exchange in Ajg,2. The
pattern should now be clear: during the first total exchange in B;, every node (v;,u;),

j=1,2,...,n, sends the following messages:

m(vi,u]-)(’Uieanla Ujeanl), m(v,—,uj)(vi@nm uj®n2)a cey

m(viauj) (vi®n(n—1)7 U’j@n(n—l)),

or, in a compact form:

{m(vi’uj)(v,-@ng,uj@ng) |¢=1,2,...,n— 1}.

This node will provide node (v;, ujg,.¢) With the £th message it needs (i.e. a message destined
for node (vig, ¢, Uj@ne) In Ajg,e). Notice that the above set contains one message to be
received by each node (v;,uj), ' # j, i.e. it is a perfect set for participation in the first

total exchange in B;. Also, it should be clear that (v;, u;) will receive the following messages:

{m(vi,ujene)(vi@ng,uj) | g = 1,2, e, — 1}

Again notice that this set contains one message for each node (v, u;), i # ¢, in A;. Thus
we achieved our goal: every node in B; receives a full set of messages to be used for the
subsequent total exchange in A;.

Since A = B, the first total exchange in A; finishes exactly when the first total exchange
in B; finishes. Thus the second total exchange in A; can start immediately, using the newly
acquired (through the exchange in B;) messages. Then the story repeats itself: a second
total exchange in B; can be performed simultaneously with the second total exchange in
A;. Our goal for this total exchange in B; remains the same: to distribute messages that

can be used for a third total exchange in A;.
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The idea behind selecting a group of messages for this second total exchange in B;
is similar to the one in the first total exchange we saw above. Now, we let (v;,u;) send

messages

m(vi,uj)(viGBn?a uj@nl)a m(vi,uj)(vi®n37 uj@nQ)a RN
M (03 ;) (Vi (n—1)> Ujdn(n—2))s M(viu;) (Vien1s Ujdn(n—1))-
The situation is repeated continuously. While the rth total exchange within A; is in
progress, the rth total exchange in B; is also performed in order to provide nodes with

messages for the next — (r + 1)th — total exchange in A;. During the rth exchange in B;

a node (v;, u;) sends the following messages:

M (v;,u) (UiGBnrv uj@nl)

M(v;,u5) (Ui@n(r+1)auj@n2)

m(viauj) (vz@n (ﬂ—l) 7uj®" (n—T) )

m(v,;,uj-)(/vi@nla ujﬂan(n—'r—l—l))

M wi05) (Vieon (r=1)s Ujn (n—1))-
Observe that the destinations v;g, ¢ are in the order given by { =r,r+1,...,n—1,1,...,r—
1. That is, the natural sequence 1,2,...,n — 1 which we used in the first total exchange
in B; is left-rotated by r positions. Based on this observation, it is easy to verify that the

above set of messages can be given in the compact form:

{7011y Wi (r=1)@n10s jpnt) | £=1,2,...,n = 1}. (7)
Similarly, it is seen that after the rth exchange in B;, node (v;,u;) will have received
messages

{m(viyujenw_l)@n_m)(v,-@ne,uj) |6=1,2,...,n— 1}, (8)
which can be used during the (r + 1)th total exchange in A;.

Let us recapitulate. During the first total exchange in Aj;, (vi,u;) uses my, u;)(*, u;)-

Simultaneously, total exchanges in B; start. During the rth exchange in B; the same node

18



sends the set of messages given in (7), and receives the set given in (8). This set will be
used for the (r + 1)th exchange in A;. This will occur for all r =1,2,...,n — 1. All total
exchanges in B; are performed in parallel with the total exchanges in A;.

The last (nth) total exchange in A; will involve the messages received during the (n —
1)th total exchange in B;. It can be noticed that (v;,u;) has sent all its messages meant
for nodes in all other copies of A, Ay (k # j), except for nodes (v;,u). In the example of
Fig. 4, we saw that during the first two exchanges in By, node (1,1) sent all its messages
with the exception of messages m(,1y(1,2) and m 1)(1,3) which are destined for node
(1,2) and (1,3). The situation is similar for nodes (1,2) and (1,3). In conclusion, messages
M (v;u;) (i, *¥) of node (v;, u;) are the only messages remaining to be sent. Observe that this
is a perfect set of messages for a (final) total exchange in B;. This nth exchange can be
performed while the nth exchange in A; occurs.

What we have described up to now is formulated as Algorithm A2 in Fig. 5. The total
exchanges in the copies of A and B are completely parallelized, hence lines 1-3. Lines 4-8
perform the transfers we described above in B;. Lines 9-13 perform the total exchanges in
A;. Notice how simple lines 11-13 are: whatever was sent through the rth exchange in B;
is used during the (r + 1)th exchange in A;.

As it is, the algorithm works for any two-dimensional homogeneous network. Extension
to more than two dimensions seems rather difficult because the homogeneity will be lost,
in the sense that A could be different than B. For example, if G = H?, G can be written
as G = A x B only if A= H? and B = H or vice versa.

However, it is easy to see that the algorithm is applicable if the dimensionality is a
power of 2. If G = H* then we let A = H* ' and B = H*"'. The algorithm can then
be applied recursively for A and B, by e.g. setting A = H?™* x H2k_2, and so on.

We proceed now to determine the time requirements of Algorithm A2 and to give

optimality conditions.
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5.1 Optimality conditions

Theorem 4 If H has n nodes and total exchange in H requires Ty steps then Algorithm
A2 i G = H x H requires time equal to:

T = ’I’LTH.

Proof. Procedure TEA() performs n total exchanges in A; (for all j =1,2,...,n in par-
allel), thus requiring nTy steps. Similarly, TEB() also requires nTy steps. The algorithm

finishes when both procedures have finished, i.e. at time T' = nT}y. a
By the recursive application of the algorithm for networks where the dimensionality is
a power of 2 we have the following corollary.

Corollary 4 Let G = H?, where d = 2*. If total exchange in H requires Ty time units,

then total exchange in G can be performed in
T=n"'Ty
steps.

Proof. The proof is by induction. The case of two dimensions was covered in Theorem

4. If, as an induction hypothesis, for G’ = H%? we need time T' = n%? Ty then set
G = G' x G’ and apply Theorem 4 with G’ treated as H, T" treated as Ty, and n%? treated
as n. It is then seen that 7' = n%2T' = n® 1Ty, as claimed. O

Theorem 5 Let G = H¢, where d = 2*. If total exchange in H can be performed in time
equal to the lower bound of (4) then the same is true for G.

Proof. From Corollary 4, total exchange in G requires 7' = n? 1Ty time units, where
n = |Vg|. If Ty achieves the lower bound in (4) then there exists a partition Vy,, Vi, of
the node set of H such that

. |VH1||VH2|

Ty = ——mm,
Cvi, Vi,
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where Cyy, vy, is the number of links separating the two parts.
Consider the following partition of V', the node set of G:

Vi = U (v, %, ..., %)

v; € VH1

Vo = U (Wi,%...,%).

v;EVH,

Then clearly, |V;| = |Vg,|n! and |Va| = |Va,|n?~!. Notice that G contains n?~! copies of
H and that in order to separate the two parts we only need to disconnect each copy of H,
by removing links only in the first dimension. Since Cy, v, links are needed to disconnect
each copy of H, we obtain

Cvv, = ’I’LdilC'VHIVH2 .
Thus, V4 and V5 is a partition of G such that

VillVal _ n® Vi, [n Vi, |

nd—lTH

d—1 ’
CV1 Va n C’VH 1 VH 2

which is equal to 7', the time needed for total exchange in G. Thus the bound in (4) is
tight for G, too. O

Summarizing, Algorithm A2 is a multiport total exchange algorithm for homogeneous
networks whose dimensionality is a power of 2. If total exchange in H can be performed in
time equal to the lower bound of (4) then Algorithm A2 optimally solves the problem in G.
For example, in [7] we have given algorithms that achieve this lower bound in linear arrays
and rings. Consequently, Algorithm A2 leads to an optimal total exchange algorithm for

homogeneous meshes and tori with 2% (k > 1) dimensions.

6 Discussion

We have given a systematic procedure for performing total exchange in multidimensional
networks. The main contribution is probably the existence of a decomposition of the
problem to simpler subproblems. Given that we have total exchange algorithms for single

dimensions, we can synthesize an algorithm for the multidimensional structure. In contrast
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with all the other works on the problem, this approach is not limited to one particular
network but to any graph that can be expressed as a cartesian product.

Except for the structured nature of our method, we also showed that it is optimal with
respect to the number of communication steps for many popular networks. Under the
single-port assumption, Algorithm A1 provides optimal solutions for hypercubes, k-ary n-
cubes, general tori and actually any product of Cayley graphs. For most of these networks,
this is the first optimal algorithm to appear in the literature.

Under the multiport assumption, we reached similar conclusions for homogeneous net-
works with 2% dimensions: Algorithm A2 solves the problem in any such network. Opti-
mality is also guaranteed if the single-dimension algorithm achieves the bound of (4). In
particular, based on known results for linear arrays and rings, meshes and k-ary n-cubes
with 2* dimensions can optimally take advantage of our algorithm. We are currently study-
ing the behavior of the algorithm in the case where the number of dimensions is not a power
of two.

Algorithm A2 can be trivially adapted to work in the case of a graph A x B where A # B
(non-homogeneous graph) but both A and B have the same number of nodes. In this case
it can be easily seen that the algorithm would require time equal to n max{Ts,Tp}, where
T4, Ty are the corresponding total exchange times in the two dimensions. Optimality
cannot be guaranteed though, even if T4 and Tz are optimal. Generalizing the algorithm
to other non-homogeneous graphs seems more difficult except maybe for the case where
the number of nodes in A is a multiple of the number of nodes in B (or vice versa). The
problem lies in the fact that the number of messages transferred during a total exchange
in one dimension may not be enough to perform a total exchange in the other dimension.

It would be interesting to study how the algorithms presented here apply to wormhole
routed networks. We believe that our ideas could be useful in deriving good total exchange
algorithms for these networks but in order to evaluate them we need different lower bounds
due to the different assumptions that pertain this switching scheme. It seems quite an open

research area as there are not too many total exchange algorithms known for this model.
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For A, For A; For A For A,
Ry ||ms(vi,u1) ms(vi,u;) ms (v, ug) ms(V1, Un,y)
Ri_1 | ms(vi—1,u1) ms(vi—1,u;) M (vim1, ug) M (Vim1, Uny)
R; ||ms(vi,u1) — ms(vi, k) M (Vi Uny)
Rit1||ms(vig1,w1) ms(vit1,u;) ms(Vit1, Ug) M (Vit1,Un,)
Rn1 ms (Unl ) ul) mg (Unl s Uj) ms (vnl P Uk) ms (vnl s unz)

Table 1: Messages to be transferred from node s = (v;,u;). Column j is actually unused

since messages of (v;, u;) for A; do not have to be transferred to any other copy of A.

For A, For A, For Aj
- m1,1)(1,2) | m(,1(1,3)
m(1,1)(27 1) m(1,1)(27 2) m(1,1)(27 3)
m(1,1)(37 1) m(1,1)(37 2) m(l,l)(Zv 3)

Table 2: Messages to be transferred from node (1,1)
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1 (a, 1) (b, 1)
a b 2 (a, 2) (b, 2)
oO—O
3 (a, 3) (b, 3)
Gl @ GL x @

Figure 1: Cartesian product of two graphs

@ (b)

Figure 2: A 4 x 3 torus as (a) four copies of a three-node ring or (b) three copies of a

four-node ring

1 Forr=1,2,...,m

2 Do in parallel for all B;, 1 =1,2,...,m

3 In B; perform total exchange with node (v;,u;)
sending messages m(vi’u]_)(vr, %), 7 =1,2,...,m9;

4 For every k=1,2,...,n9

5 Do in parallel for all 4;, j =1,2,...,n2

6 In A; perform total exchange with node (v;,u;)

sending messages My, u,) (*,u5), 1 = 1,2,...,n1;

Figure 3: Algorithm Al
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(1,1) 1,2) (1,3

O—0—0
(2’3)
O—0O

..
O——0O

Figure 4: A 3 x 3 homogeneous mesh

1 Do in parallel

2 - TEA();
3 - TEB();
TEB()
4 Forr=1,2,...,n—-1
5 Do in parallel for all B;, 1 =1,2,...,n
6 Perform total exchange in B;: node (v;,u;) sends
{mwi ) Vign(r—1)@n_10)s Yjone) | £ =1,2,...,m — 1}
7 Do in parallel for all B;, t1 =1,2,...,n
8 Perform total exchange in B;: node (v;, u;) sends
M, ;) (Vi *);
TEA()

9 Do in parallel for all 4;, 7 =1,2,...,n

10 Perform total exchange in A;: node (v;, u;) sends
My ;) (%5 Uj);

11 Forr=2,...,n—-1

12 Do in parallel for all 4;, j =1,2,...,n

13 Perform total exchange in A;: node (v;,u;) sends

the messages received from the second dimension (B;);

Figure 5: Algorithm A2 for multiport homogeneous networks: G = Ax Band A= B = H.
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