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Abstract

Broadcasting is an information dissemination problem in which a
particular node in a network must transmit an item of information to
all the other nodes. In this work we present new lower bounds for the
time needed to complete this process in arbitrary graphs. In particular
we generalize a result of P. Fraigniaud and E. Lazard [Discrete Ap-
plied Mathematics, 53 (1994) 79-133] which states that if in a graph
there are at least two vertices at distance equal to the diameter from
the originator, then broadcasting requires time at least equal to the

diameter plus one.
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1 Introduction

Information dissemination, apart from its theoretical interest, has always
been of practical importance especially when it comes to network computing
and, more recently, distributed-memory multiprocessors. Broadcasting in
particular is an essential operation in the majority of parallel algorithms.
One important class is parallel numerical algorithms [1, 2].

Consider a connected graph (or network) G and a particular vertex (or
node) v which we will call source or root. The model we will follow is the
single-port one whereby each node may utilize only one of its incident links
at a time. More formally, broadcasting from v involves the transmission of
a message from v to the rest of the vertices in G subject to the following

constraints:
e cach transmission involves exactly two vertices
e cach transmission requires one time unit (or step)
e a vertex may call at most one other vertex per time unit
e a vertex may only transmit to an adjacent vertex.

The broadcasting time of a root vertex v, denoted B(v), is the minimum
number of time units required to complete broadcasting i.e. to have all other
vertices informed about the message. One of the first known results is that
since the number of informed vertices can at most double after each step,
B(v) > log, n, where n is the number of vertices in G.

There has been a substantial amount of work on the problem. Hedet-
niemi, Hedetniemi and Liestman [3] and Fraigniaud and Lazard [4] gave two
excellent surveys on the subject. A large portion of the work has been con-

centrated on constructing efficient broadcast graphs, i.e. graphs that allow for



broadcasting in the minimum possible time and contain as few edges as pos-
sible; see for example [5] and the references therein. The rest of the work on
the problem concentrates mostly on developing minimum-time algorithms or
determining bounds on the broadcasting time of particular classes of graphs.

In this paper we derive general lower bounds for the broadcasting problem
in arbitrary graphs. Assume that the farthest node from v is at distance e(v)
(e(v) is known as the eccentricity of node v). Except for B(v) > log, n, the
only other general bound known is that B(v) > e(v); this is easy to see since
nodes at any distance d away from a source node cannot be reached in less
than d steps. Fraigniaud and Lazard [4] showed that if there exist at least 2
nodes at distance e(v) from the source node, then at least e(v) + 1 steps are
required. We show here that a general formula may be derived based on the

number of nodes at distance greater than a given constant.

2 A New Lower Bound

Consider a graph G and let v be the source node. We will assume that there
exist n; nodes in G which are at distance ¢ from v, for all ¢ = 1,2,...,e(v).
The sequence {n1,ns,...,New)} is known as the distance degree sequence of
node v [6]. Based on this sequence, we are going to derive a lower bound for
the broadcasting time, B(v), of node v.

Let 7(¢,t) be the mazimum possible number of distinct nodes that can
be reached through paths of length / from v and which get informed exactly
at time ¢. The quantity r(¢,t) is just an upper bound on the number of such
nodes, independently of the the structure of the network. Consider all nodes
who got informed some time before ¢, through a path of length /—1. At time
t, each of these nodes can at most inform one other node, and this node will

receive the message through a path of length £. Therefore (¢, ) is described



by the following recursion:
r(ft)=r(l—1t—-1)+r(l—-1,t—2)+---+r(£—1,0—-1). (1)

Notice that if £ > t then no node ¢ links away from v has been informed
as of time ¢t. Thus r(¢,t) = 0 for £ > ¢ and this is why the above recursion
stops at the term r(¢ — 1,£ — 1). The recursion thus holds for any ¢ > £ and
¢ > 1. Since the root can inform at most one of its neighbors at a time, only
one node at distance 1 from the root can be informed at any step t > 1,
leading to the boundary condition r(1,t) = 1. We finally define »(0,0) = 1;
the source is assumed to become aware of the message at time 0. It should
be noted that a limited-history version of the above recursion was derived in

[7] for graphs with maximum degree of four.

r(0,t) = (E:i)

Proof: Eq. (1) can be written in a more familiar form by observing that
r(l—1,t—2)+r({—1,t—3)+---+r({—1,£—1) = r({,t — 1). Consequently

we have

Lemma 1

r(l,t) =r(l—1,t — 1)+ 7t — 1),

with 7(1,¢t) = 1 for t > 1. Using the standard technique of generating

functions, it can easily be shown that the solution of the above recursion is

r(6,t) = (i23) Bl 0

2.1 General Networks

Based on the above, we may express a general lower bound on broadcasting

from node v. As we already mentioned, nodes that receive the message
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through paths of length ¢ are not necessarily at distance ¢ from v. In general,
if a vertex is at distance ¢ from v, it may be informed through any path of
length £ > ¢'. Concentrate on distance d and assume that broadcasting
finishes at time B(v) = T. Then by time 7T all nodes at distance d or more
must have been informed. According to the distance degree sequence, the

number of nodes at distance at least d from v is

e(v)
Rd = Z ;.
i=d

Since such nodes must be informed through paths of length at least d, we

must have
T

zT: Z ’I“(f, t) Z Rd.

{=dt=¢t

From Lemma 1 we obtain
T T T T /i1
>y =33 (37 ))
t=d t=t t=d t=t
The sum on the right-hand side evaluates to ), (F‘D [8]. Hence,
T T T (T
»yr(en =3 (7) = fu o)
{=d t=¢ {=d

We have thus proven the following:

Theorem 2 If R, is the number of nodes at distance d or more from v and
T 1is the minimumt such that 35_, (2) > Ry then B(v) > T, i.e. broadcasting

from v requires at least T steps.

Notice that if d = 0, Ry = n, i.e. all nodes in the network are included.

In this case, using standard results, (2) reduces to
T
T
£()-ro-
= \*

5)



which gives T' > log, n, the well-known bound for any network.

At the other extreme, consider the case of d = e(v). If T is equal to
e(v) then (2) shows that R.(,) = n.@) < 1. This was a result derived in [4].
We may obtain similar results for other values of T > e(v). For example,
if T'= e(v) + 1 then (2) gives (e(:():)’1> = e(v) + 1 > ng(). Consequently, if
there exist more than e(v) + 1 nodes at distance e(v) from the source node,
broadcasting requires at least e(v) + 2 steps.

We next give an approximate formula for the minimum 7' due to the

difficulty associated with handling inequality (2).

Corollary 3 Broadcasting from v requires time at least equal to

2d —1 if Rg=4%"1
7 ) logy(47" + Ry) if Rg>4%1
d

7+ [d!(Rg — )Y 4f Ry < 4971,

Proof: Setting T'= 2d — 1, (2) evaluates to

21 fod — 1) 12421 (Qd - 1) 1
Z P Z — _22(171 — 4(171 Z Rd,
{=d ( E 2 £=0 f 2

hence the first branch of the result.
If R; > 4% then T > 2d — 1. We obtain

%) - %0)-%0)
()5 (")

— 2T o 122(171‘
2

5
>

T
=0
T
=0

IA

2

Hence, 27 > 4971 + Ry, or T > log, (441 + Ry).
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If R; < 49! then T < 2d — 1. In this case the maximum term of the sum
in (2) is (5) Consequently,

() <o)

By standard combinatorial properties, (7' — d) (Z;) =(d+ 1)( r ) Hence,

d+1
T
T T—-d)(T—-d+1)---T
Z()S(dJrl)( ) J‘r) +1.
= \L (d+1)!
It is known that given m numbers ay, . . ., a,,, their geometric mean (a; - - - am)l/ m

is less or equal to their arithmetic mean (aq +- - - +a,,)/m [9]. Thus, we seek
the minimum 7" such that
[T - 4o

7l > Rg— 1.

Taking the (d + 1)th root of both sides yields the desired result (last branch
of the equation).
As a final note, for large m, Stirling’s approximation gives m! =

v2mm(m/e)™, where e is the base of the natural logarithms. Consequently,

if d is large and R; < 4?71, the last branch of the corollary can be written as

T>

d_ d+1((Ri—1)Var 7
2 e Vd+1 '

2.2 Trees

Trees are of particular interest since a broadcasting algorithm actually defines
a spanning tree of the underlying network. The interested reader is referred

to [10]. If the network is a tree, the path between any two nodes is unique and



as a consequence, nodes informed through a path of length /¢ are at distance

exactly ¢ from the root; (2) may thus take the simpler form

> r(d,t) = (Z) > N,

t=d

which leads to the following corollary.

Corollary 4 If the network is a tree rooted at v and T is the minimum t
such that (2) > ng then B(v) > T, i.e. broadcasting from v requires at least
T steps.

It is interesting to note that if A = e(v) is the height of the tree, according
to the above corollary, if broadcasting is to be completed in the minimum
number of steps (i.e. 7' = h) then there must exist at most (2‘) nodes in any
level £ of the tree. Trees with exactly (’Z) nodes at every level £ =0,1,...,h
and which achieve this minimum broadcasting time are unique and are known

as binomial trees [10].

3 Summary

In conclusion, we derived lower bounds on the time needed to broadcast from
a vertex in arbitrary networks. The bounds may be viewed as a generalization
of a result in [4] and they are based on the distance degree sequence of the
source node. The known bounds from the literature, B(v) > log,n and
B(v) > e(v) become special cases of our formulas.

Tighter bounds may be derived if it is known that the network is of
bounded degree, i.e. no node has degree greater than a given constant. In
this case one may consider a recursion similar to (1) but with limited history.
However to the best of our knowledge no closed-form solution can be obtained

for such a recursion. In [7] an approximation was given for the case where the
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maximum degree is four. The only other known result for bounded-degree
graphs is due to J.-C. Bermond et al [5] and is based only on the number of

nodes in the network.

Acknowledgement

The authors would like to thank one of the anonymous referees whose com-

ments improved substantially the presentation of the results.

References

1. D. B. Gannon and J. van Rosendale, On the impact of communication

complexity on the design of parallel numerical algorithms, IEFE Trans.

Comput. C-33 (1984) 1180-1194.

2. S. L. Johnsson, Communication efficient basic linear algebra computa-
tions on hypercube architectures, J. Parallel Distrib. Comput. 4 (1987)
133-172.

3. S. M. Hedetniemi, S. T. Hedetniemi and A. L. Liestman, A survey of
gossiping and broadcasting in communication networks, Networks 18
(1988) 319-349.

4. P. Fraigniaud and E. Lazard, Methods and problems of communication

in usual networks, Discrete Appl. Math. 53 (1994) 79-133.

5. J. - C. Bermond, P. Hell, A. L. Liestman and J. G. Peters, Broadcasting
in bounded degree graphs, SIAM J. Discrete Math. 5 (1992) 10-24.

6. F. Buckley and F. Harary, Distance in Graphs (Addison - Wesley, Read-
ing, Mass., 1990).



7.

10.

R. Klasing, B. Monien, R. Peine and E. A. Stohr, Broadcasting in but-
terfly and deBruijn networks, Discrete Appl. Math. 53 (1994) 183-197.

C. L. Liu, Introduction to combinatorial mathematics (McGraw-Hill, New

York, 1968).

D. S. Mitrinovié, Elementary inequalities (P. Noordhoff, Groningen,
Netherlands, 1964).

A. Proskurowski, Minimum broadcast trees, IEEFE Trans. Comput. C-30
(1981) 363-366.

10



