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Abstract

We examine the hamiltonicity of the cartesian product P = G1 × G2 of

two graphs G1, G2. We provide necessary and/or sufficient conditions for P

to be hamiltonian, depending on the hamiltonian properties of G1 and G2,

with corresponding constructions. We also prove a conjecture by Batagelj

and Pisanski related to the ‘cyclic hamiltonicity’ of a graph.
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1 Introduction

An undirected graph G = (V,E) is said to be hamiltonian if it contains a spanning

cycle. If it contains a spanning path then G is called traceable. The problem of

determining whether a graph is hamiltonian or traceable has been fundamental in

graph theory. This and related problems have been extensively surveyed (see for

example [3, 6]).
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We are interested in the hamiltonicity of the cartesian product of graphs. Given

two graphs G1 = (V1, E1) and G2 = (V2, E2), their cartesian product is defined as

the graph P = (V,E) = G1 × G2, where V = V1 × V2 = {(u, v) |u ∈ V1, v ∈ V2}

and

E = {(u, v)(u′, v′) | (u = u′ and vv′ ∈ E2) or (v = v′ and uu′ ∈ E1)}.

The motivation behind this work comes from multicomputer interconnection

networks, which are almost exclusively based on cartesian products of graphs (e.g.

hypercubes, meshes, tori). In such settings, having a hamiltonian cycle is crucial

for achieving optimal performance in various communication operations, gossiping

being just one example [4, 5].

The problem we study is the following: given two graphs G1 and G2, are there

any necessary and/or sufficient conditions for their cartesian product P = G1×G2

to be hamiltonian? Although, general conditions for the hamiltonicity of arbitrary

graphs are well known, there are few results related to the cartesian product of two

graphs [1, 2, 8, 9, 10, 11]. In this paper we summarize previously known results and

provide new ones for the hamiltonicity problem in the cartesian product. We also

prove a conjecture by Batagelj and Pisanski [1] related to the ‘cyclic hamiltonicity’

of a graph and give a linear-time algorithm for constructing a hamiltonian cycle

in the product of a hamiltonian and certain non-hamiltonian graphs.

2 Terminology and Notation

The notation and terminology we use follows Harary [7]. Let G = (V,E) be an

undirected graph with vertex or node set V and edge set E. The number of vertices

|V | is known as the order of G. Two nodes v, u ∈ V are adjacent if the edge vu

is in E. The number of nodes v is adjacent to is the degree of v, denoted by d(v).

The maximum degree in the graph is ∆(G) = maxv∈V {d(v)}.

A walk of length k from v to u consists of a sequence of vertices v=v0, v1, v2, ..., vk=u,

and edges vivi+1, where vivi+1 ∈ E, for all 0 ≤ i < k. A path is a walk where

all vertices are distinct. In the case where all vertices are distinct, except v = u,

the sequence is a cycle of length k, or a k-cycle. The graphs we consider here are
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Figure 1: Cartesian product example.

always assumed to be connected, i.e. for any pair of vertices there is always a walk

between them. If G is connected and has no cycles, then it is called a tree. If there

exists a path that spans G (i.e. all vertices are included) then G is called traceable.

If there exists a cycle that spans G then G is called hamiltonian.

A graph G′ = (V ′, E ′) is a subgraph of G (denoted by G′ ⊆ G) if V ′ ⊆ V and

E ′ ⊆ E. If V ′ = V , then G′ is a spanning subgraph of G. A connected spanning

subgraph of G with no cycles is a spanning tree of G.

A graph G is bipartite if its node set can be partitioned in two disjoint sets

V (1) and V (2) such that every edge in G joins a node from V (1) with a node from

V (2).

The cartesian product of two graphs G1 and G2 was defined in Section 1. The

graphs G1 and G2 are termed factors of the product. An example is given in

Figure 1, where the two factors are simple cycles. Clearly, if any of the factors

is not connected then their product is also not connected, and hence cannot be

hamiltonian; hereafter we assume that all factors are connected.

For a graph G, let us define D(G) = min{∆(T ) |T is a spanning tree of G},

that is, there is no spanning tree of G with maximum degree less than D(G).
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3 Non-hamiltonian Factors

Consider the case where G1 = (V1, E1) and G2 = (V2, E2) are arbitrary graphs. In

this section we provide conditions that determine the hamiltonicity of the cartesian

product P = G1 × G2. As far as we know no other results have appeared in the

open literature for this general case.

Theorem 1 Let G1 and G2 be both of odd order. If none contains an odd cycle,

then P = G1 × G2 is not hamiltonian.

Proof. A graph has no odd cycles if and only if it is bipartite [7]. It is easy to

see that the cartesian product of bipartite graphs is bipartite too [10]: if V
(1)
i , V

(2)
i

is the bipartition of Gi, i = 1, 2, then a bipartition of P is V (1), V (2) = V − V (1),

where V (1) = {(v, u) | (v ∈ V
(1)
1 and u ∈ V

(1)
2 ) or (v ∈ V

(2)
1 and u ∈ V

(2)
2 )}. Since

bipartite graphs have only even cycles, and the order of P is odd, P cannot contain

a hamiltonian cycle. 2

The next theorem is based on the maximum degree of the factors’ spanning

trees.

Theorem 2 If D(G1) > |V2| + 1 or D(G2) > |V1| + 1, then P = G1 × G2 is not

hamiltonian.

Proof. Without loss of generality, assume that D(G1) > |V2| + 1. Suppose for

contradiction that the product P is hamiltonian and let H be a hamiltonian cycle

of P . Pick an arbitrary vertex (a, v), mark a as “encountered” and initialize a

set A to the empty set. Starting from (a, v), walk along H and for every two

consecutive vertices (b, u) and (b′, u′) do the following:

If b′ has not been marked yet, mark b′ as “encountered” and insert the

pair [b, b′] in A (note that in this case the definition of the cartesian

product implies that u = u′ and bb′ is an edge of G1).

Since H is a hamiltonian cycle, at the completion of the above procedure, all

vertices of G1 are marked as “encountered.” Moreover, the fact that a pair [b, b′]
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is inserted in the set A whenever the first vertex (b′, u) is visited, where b′ 6= a and

u is any vertex of G2, implies that the pairs in A are distinct and their number

is |V1| − 1. Additionally, when a pair [b, b′] is inserted in A, b′ has not been

encountered yet; thus, the pairs in A do not induce a cycle. As a consequence, the

edges corresponding to the pairs in A form a spanning tree T of G1.

Consider any vertex b of G1 and let us compute its degree in T . Clearly, if

b 6= a, the set A contains exactly one pair [x, b], which was inserted in A when

b was marked as “encountered;” if b = a, no such pair exists. Additionally, A

contains pairs [b, y] which are inserted in A whenever we move from a vertex (b, u)

to a vertex (y, u) as we walk along the cycle H, and y has not been marked yet.

Since H visits each vertex of the product P exactly once, exactly |V2| vertices (b, u)

will be visited, u ∈ V (G2); each of those may contribute at most one pair [b, y]

in A. Hence, the number of pairs in A with one of their elements equal to b is at

most |V2|+1, which implies that the degree of the spanning tree T of G1 is at most

|V2| + 1. This contradicts the assumption that D(G1) > |V2| + 1 and therefore, P

is not hamiltonian. 2

Strong results can be obtained if the two factors are traceable (their product

is also traceable [10]). The following theorem is due to Behzad and Mahmoodian

[2], albeit their proof is quite involved. We provide here a much simpler proof.

Theorem 3 If both G1 and G2 are traceable, then P = G1×G2 is not hamiltonian

if and only if both have odd order and none has an odd cycle.

Proof. If both factors have odd order and none has an odd cycle, by Theorem 1,

P is not hamiltonian.

If one of the factors has even order, then P is hamiltonian; a hamiltonian cycle

is given in Figure 2(a) (only the spanning paths are considered and shown for each

factor). If both have odd order and one has an odd cycle, P is hamiltonian; a

hamiltonian cycle is given in Figures 2(b) and 2(c) — it is reproduced from [2]. 2
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(a)

odd odd odd
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even evenodd
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Figure 2: A hamiltonian cycle in the product of two traceable graphs: (a) G1 has

even order; (b) and (c) both factors have odd order and G2 has an odd cycle (two

cases, depending on the position of the cycle).

(a) (b)

Figure 3: Hamiltonian cycle in the product of two hamiltonian graphs: (a) one

having even order and (b) none having even order.

4 Hamiltonian Factors

If both G1 and G2 are hamiltonian, it is known that their product is hamiltonian,

too. We provide a construction in Figure 3, for the cases of G1 having (a) an even

or (b) an odd number of nodes (only the edges of the hamiltonian cycle in each of

the factors are considered and shown).

Consider now the case that only one of the factors is hamiltonian. Assume

without loss of generality that G2 is hamiltonian. To simplify the notation, let

G = G1 (as always, assumed connected), H = G2, so that P = G × H and let
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n = |V (H)|.

Sabidussi [9] proved that if |V (G)| ≤ (n + 2)/2 then G × H is hamiltonian.

A stronger result was obtained by Rosenfeld and Barnette [8] who showed that if

∆(G) ≤ n then G × H is hamiltonian. Batagelj and Pisanski [1] showed that this

is necessary and sufficient for P to be hamiltonian in the case G is a tree. The

following followed as a corollary:

Corollary 1 If H is hamiltonian and D(G) ≤ |V (H)| then G×H is hamiltonian.

In other words, if there exists a spanning tree of G such that its maximum degree

is less than n, then G × H is hamiltonian.

The authors in [1] showed that the converse of Corollary 1 is not true. They

defined the cyclic hamiltonicity, cH(G), of a graph G as the minimum n such

that G × Cn is hamiltonian, where Cn is the n-node cycle. Corollary 1 implies

cH(G) ≤ D(G). They finally conjectured that cH(G) ≤ D(G) ≤ cH(G) + 1.

What we have proven here, if we combine Corollary 1 with Theorem 2, is that the

conjecture is actually true:

Corollary 2 For any non-trivial connected graph G, cH(G) ≤ D(G) ≤ cH(G)+1.

Finally, we provide a linear-time algorithm to construct a hamiltonian cycle in

G × H if the conditions of Corollary 1 are satisfied; T is a given spanning tree of

G with ∆(T ) ≤ n, and {i | 0 ≤ i < n} is the sequence of vertices in a hamiltonian

cycle of H. The algorithm is given in Figure 4, where ⊕ is addition modulo n,

along with an example. A call to trace(u, k, b) adds all vertices {(u′, v) |u′ belongs

to u’s subtree in T} to the partially constructed hamiltonian cycle H. H enters

this set at (u, k) and exits at (u, k⊕(−b)). Since u’s degree in T is no more than n,

the loop at line 11 will not be executed more than n− 1 times, therefore i will not

advance past the exiting vertex. The loop at line 16 is used to visit all remaining

vertices (u, i) and advance to the exit point, in case u’s degree in T is less than n.
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(1) begin main program

(2) H := ∅

(3) select any r ∈ V as the root of T

(4) call trace(r, 0, +1)

(5) end main program

(6)

(7) procedure trace(u, k, b)

(8) begin

(9) append (u, k) to H

(10) i := k

(11) for all v: v is a child of u in T do

(12) call trace(v, i, −b)

(13) i := i ⊕ b

(14) append (u, i) to H

(15) end for

(16) while i ⊕ b 6= k do

(17) i := i ⊕ b

(18) append (u, i) to H

(19) end while

(20) end

21 30

(a) (b)

Figure 4: (a) An algorithm to construct a hamiltonian cycle in the cartesian

product of a tree T = (V,E) and Cn, with ∆(T ) ≤ n. (b) An example in T × C4,

where the constructed cycle H is indicated with solid lines.
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