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Abstract. We have designed and implemented OMPi, a portable com-
piler for OpenMP/C. This paper presents an overview of our compiler
and its supporting libraries. OMPi is a C-to-C translator that takes C
code with OpenMP directives and produces equivalent multithreaded
C code ready for execution on a multiprocessor. Our compiler is the
only publicly available one that adheres to version 2.0 of the standard.
OpenMP uses POSIX threads for portability, but its architecture allows
targeting other thread libraries, as well. It includes platform-specific op-
timizations and a full POMP library implementation for instrumentation
and performance monitoring.

1 Introduction

The shared address space (or simply shared memory) model has been tradi-
tionally one of the most popular parallel programming paradigms; intimately
tied to shared-memory multiprocessor architectures, it can also be supported
in distributed memory organizations (e.g. clusters) through distributed shared
memory (DSM) mechanisms.

A long list of non-portable, incompatible, vendor-specific environments for
shared memory programming has recently been surpassed by OpenMP [14, 15],
an application programming interface (API) for C, C++ and Fortran. OpenMP
has been endorsed by all major software and hardware vendors and will soon
become the de facto standard for shared-memory programming. In contrast to
other APIs such as the POSIX threads [5] (pthreads for short), OpenMP is a
higher level API which allows the programmer to parallelize a serial program in
a controlled and incremental way.

The OpenMP API consists of a set of compiler directives and runtime sup-
porting calls. It provides for expressing parallelism, sharing work, specifying the
data environment and synchronization. The directives are added to an existing
serial program in such a way that they can be safely discarded by compilers
that do not understand the API (thus leaving the original serial program un-
changed). As a consequence, OpenMP extends but does not change the base
language (C/Fortran).

Many commercial compilers nowadays provide support for OpenMP, includ-
ing compilers by Fujitsu, Intel, PGI, SGI and Sun. Recently, a number of those



compilers added support for version 2.0 of OpenMP [16, 15], which defines a
number of additions and enhancements to the original version of the API. A
number of research compilers have also been reported, all of them supporting
OpenMP v.1.0.

OdinMP/CCp [3] supports OpenMP for C and is a standalone C-to-C trans-
lator that produces C code with pthreads calls. Another version (called OdinMP)
is available as part of the Intone project [2], which aims at producing a compila-
tion system along with instrumentation and performance libraries for OpenMP.
OdinMP is a C/C++ translator but it does not fully support the OpenMP API
(for example threadprivate variables are not allowed).

Nanos [1] was a source-to-source Fortran compilation environment mainly for
SGI Irix machines, which included a parallelizing compiler, a user-level thread
library and visualization tools. The Nanos system supported a subset of version
1.0 of the OpenMP Fortran standard.

Omni [17] is a sophisticated compilation system that supports OpenMP for
both C/C++ and Fortran. It is also a source-to-source compiler which can target
a number of thread libraries such as pthreads, Solaris threads, IRIX sprocs, etc.,
and it also includes support for clusters through a software DSM library.

OMPi is our experimental OpenMP/C compiler, developed at the Depart-
ment of Computer Science of the University of Ioannina. It is an efficient and
portable open-source implementation, and the only publicly available one that
adheres fully to version 2.0 of the standard for C. OMPi is an on-going project
that aims at providing a tool for OpenMP programming and runtime support
research. This paper presents an overview of the implementation of OMPi and
its support libraries, and is organized as follows: Section 2 provides details about
our implementation, including its thread and execution model, its code transfor-
mations, and its runtime support. In section 3 we discuss a few non-portable im-
plementation issues of the compiler, indented to improve performance on specific
platforms. Section 4 presents the monitoring interface implemented in OMPi. In
Section 5 we include sample performance results for the NAS parallel bench-
marks, used to evaluate OMPi and compare it to other implementations. We
conclude the paper in section 6 with a summary and a discussion of the project’s
current status.

2 The compiler

OMPi is a source-to-source translator that takes as input C source code with
OpenMP V.2.0 directives and outputs equivalent multithreaded C code, ready
to be built and executed on a multiprocessor. An initial prototype was presented
in [6]. The current version is fully V.2.0 compliant, can target different thread
libraries through a unified thread abstraction, and includes many architecture-
dependent as well as higher-level optimizations. Finally, the compiler and the
runtime libraries include support for the POMP performance monitoring inter-
face.



OMPi is implemented entirely in C, while the majority of the other research
compilers have parts written in Java and require a Java interpreter during com-
pilation. It has been ported effortlessly on many different platforms, including
Intel / Linux, Sun / Solaris and SGI / Irix systems.

2.1 OMPi threads

OMPi produces multithreaded C code. Its architecture is such that any specific
thread library can be supported through a well-defined generic interface, making
OMPi quite extensible. This interface consists of an opaque data type for thread
objects (othread t) and a set of functions which include calls for creating threads
(othread create()), utilizing per-thread private data and manipulating various
lock types (e.g. othread set lock()). Details of the thread interface can be
found in [8].

OMPi currently supports two specific thread libraries, both through the
generic thread interface. The first is POSIX threads (pthreads). This is OMPi’s
default thread library target mainly for portability reasons, since it is available
almost everywhere. Moreover, recent pthreads implementations have been highly
optimized in various environments (e.g. for Linux kernels 2.6.x [7]), which make
pthreads attractive performance-wise, too. The second library can be used in
Sun / Solaris machines, where the user has the option of producing code with
Solaris threads [19] calls.

It should be noted that the generic interface provides for a transparent choice
of the underlying thread library. That is, the source code is not affected in any
way — the actual thread library that will be used is only included at linking
time.

2.2 Execution model

OpenMP uses the fork/join model. When a parallel region is encountered
in the code, thread entities are created to execute the specified task, and are
destroyed (joined) at the end of the region.

For performance reasons, OMPi does not create / destroy threads at each
parallel region but recycles them instead. Upon initialization, OMPi creates a
pool of threads equal to the number of available processors in the system, which
are put immediately to sleep, waiting for work. Whenever a parallel region
is encountered, a number of threads are awakened and are given a function to
execute, with the master thread participating, too. At the end of the region each
thread goes back to sleep; after all threads sleep, the master thread is the only
one to continue its execution.

The number of threads to participate in the execution of a parallel region
is governed by the standard OpenMP library functions and environmental vari-
ables and can also be dynamically adjusted. The new clause num threads(N) of
OpenMP V.2.0 is also supported whereby the parallel region is enforced to use
exactly N threads.



2.3 Source transformations

The compilation process involves extensive transformations to the source code
which produce the final multithreaded C file. In particular, whenever a parallel

region is encountered, the following transformation process is followed:

– The code inside the parallel region is moved to a new function which will
be called by all threads.

– In the place of the original code, code for the creation of a team of threads
is injected. The threads are drawn from of the thread pool, and each thread
executes the new function. Right after, all threads are joined and returned
to the pool.

– Private variables are re-declared as local inside the new function.
– Shared variables that are global in scope need no special treatment since

they are by nature available to all threads.
– Non-global shared variables are declared locally as pointers, initialised to

point the original variables.
– Non-global shared variable references are replaced by appropriate pointer

references.

Worksharing constructs do not produce any new functions in the final code
but require restructuring of the original code to accomodate run-time decisions.
For example, a for directive is implemented by the following steps:

– A new lectical scope is created.
– The loop index and any reduction variables are declared as local within this

scope, along with other utility variables.
– The thread executes a loop asking for the next set of iterations.
– The run-time library, calculates the initial, final and increment values for the

next set of iterations and returns them to the calling thread. The calculated
values are based on the selected schedule, chunk size and the thread’s id.

– The thread executes the for loop code with the pre-calculated values and
loops back to ask for the next set of iterations.

– The thread that receives the last set of iterations updates the lastprivate

variables, if any.
– If a reduction clause is specified, each thread contributes its local value to

the shared reduction variable using locks for mutual exclusion.
– If a nowait clause is not present, a barrier call is generated (which may be

removed by the compiler if there is another barrier call right after that, for
optimization reasons).

2.4 Runtime support

It is beyond the scope of this paper to go into further details, but transforma-
tions analogous to the ones in the previous section occur for every OpenMP
directive. All transformations and all additionally generated code produce calls
to the libompi library which provides runtime support. This includes primitives



for thread management, for iteration scheduling, for mutual exclusion and for
synchronization.

In particular, the pool of threads is managed at runtime by libompi, which
provides functions (trannsparently used by the compiler) for giving work to
threads, suspending them to a waiting queue and resuming them in order to form
active teams. The runtime library also includes calls for dynamically distributing
iterations among threads, for all types of OpenMP for schedules. In addition,
the runtime library implements all runtime calls specified by the OpenMP API,
such as calls for querying the id of a thread, the number of processors in the
system, the wall clock time, etc.

Most parallel programs utilize synchronization primitives, such as barrier
calls, which account for a significant percentage of the total execution time. The
compiler attempts to speed up the generated code by removing redundant barri-
ers. This is an optimization whose significance is well known [9]. OMPi’s runtime
library includes a base barrier implementation which is, however, overrideable
by the user. The barrier functions have been implemented as weak symbols;
this allows any user to provide their own custom implementations for the barrier
functions without requiring access to the internals of the compiler or its support
libraries.

3 Platform-specific issues

OMPi can be easily ported on many different platforms, in fact on any plat-
form which supports pthreads, such as all modern Unix derivatives. The source
code of the compiler, as well as the output code it generates is highly portable.
However, portability sometimes is a tradeoff for performance. This is why in
various platforms we had access to we tried to provide hardware-specific and
operating-system specific optimizations.

First, most data structures have been made cache-aligned. For the systems we
considered cache lines were 32–64 bytes long. Core structures were also padded
up to cache line size so as to avoid false-sharing phenomena. Those two simple
platform-dependent considerations alone were enough to boost performance up
to 20% in various benchmarks and more than 5% in some applications.

Another characteristic platform-specific issue is the implementation of the
flush directive which has not been discussed widely in the open literature.
The flush primitive is implied in almost all OpenMP directives and basically
provides a mechanism for enforcing sequential memory consistency behavior on
machines that support relaxed memory ordering models. However, the flush

primitive can be a quite demanding operation with significant performance im-
pact.

A portable but inefficient implementation involves locking and unlocking a
pthreads mutex, which provides for the desired behaviour [5]. We also resort to
this method, but for the machines we had access to we utilize faster methods.
In particular, we make use of CPU-specific machine instructions that force the



correct memory orderings. For IA32 and Sparc CPUs, the utilized instructions
are summarized in Table 1.

Table 1. Memory ordering instructions used by OMPi for some CPUs

Instruction CPU Ordering Model

STBAR Sparc V8 PSO
MEMBAR Sparc V9 TSO/PSO/RMO
XCHG Intel Pentium PC
CPUID Intel Pentium PC

4 Performance monitoring

There has been a long standing demand for an official performance monitoring
specification for OpenMP. Although there has been no official endorsement yet,
there exists a first incomplete proposal [11] which tries to combine two indepen-
dent proposals, POMP [12] and OMPI, which is part of the Intone project. The
two interfaces are fundamentally different and it is questionable whether a uni-
fied interface can emerge. Of the two, POMP seems the faster, better-designed
and closer to the proposal in [11].

OMPi provides full support for the POMP interface. Upon user request (by
passing specific parameters to the compiler), the produced code goes through
additional transformations which automatically insert POMP calls at specific
places, including entry and exit points of:

– parallel blocks
– for, sections, single and master blocks
– explicit and implicit barriers
– critical regions

All runtime library OpenMP functions include monitoring calls and there are
also provisions for user-driven monitoring of arbitrary regions of the program.
Finally, because of the overhead induced by the performance monitoring mech-
anisms, and the size of trace data collected, POMP includes directives that can
turn profiling on / off anywhere in the user program.

POMP, used in conjunction with visualization utilities constitutes a powerful
tool for parallel program analysis. We have used the EPILOG library [12] to
intercept the POMP calls that OMPi produces and targeted the metrics to the
CUBE visualization utility [18].

In Fig. 1 we provide a sample performance output which was obtained after
compiling with OMPi and executing a simple program which calculates π =
3.14 · · ·. CUBE was used to display the collected traces. The following is a portion
of the program:



Fig. 1. CUBE display of collected POMP performance data

#pragma omp parallel

{

#pragma omp for reduction(+: pi)

for (i = 0; i < N; i++)

pi += 4.0 / (1.0 + (i+0.5)*(i+0.5)*w*w;

#pragma omp master

{

printf("pi = \%1.20lf", pi*w);

#pragma omp inst begin(sleeping)

sleep(2);

#pragma omp inst end(sleeping)

}

}

The left column displays performance metrics for various entities and the
middle column displays the call tree for a user-selected metric of the left column.
In this example, the total execution time was 11.7 sec of pure computation, plus
1.6 sec spent on a barrier synchronization plus another 6 sec spent because of
idling (in the sleeping region of the above code). The barrier on which threads
spent their time, is the implicit one at the end of the master region. In the third
column, per-thread performance data are displayed. In particular, the barrier
in question made thread 0 (the master thread) spent a whole second waiting,
while the others waited much less. This is a clear indication of load imbalance.
A guided for schedule could possibly lead to better performance.



5 OMPi performance

OMPi has been validated through countless tests, including the OpenMP val-
idation suite reported in [10], which tests for implementation correctness and
compliance to the API specifications. Numerous benchmarks, microbenchmarks
[4] and application codes have also been used to assess the performance of our
compiler. Here, and due to space limitations, we present indicative results for the
NAS Parallel Benchmarks suite (NPB, [13]), version 2.3, which has been ported
to OpenMP C by the Omni group.

The benchmarks were compiled and executed on two different systems: an
SGI Origin 2000 machine running Irix 6.5 with a total of 64 MIPS R10000/12000
CPUs (where we only had access to 8 of them) and a Compaq Proliant ML570
server with 4 Intel III Xeon CPUs running Linux. In the SGI machine we had
access to the native MIPSpro V.7.3 compiler, while the Compaq machine offered
the ICC Intel compiler, both supporting OpenMP pragmas.

Except OMPi and the commercial compilers, we used Omni and tried to use
OdinMP/CCp but the later was quite unstable. All benchmarks were class W.

Fig. 2 shows the results for a sample of 4 out of the 8 application codes,
namely the BT, CG, FT and LU routines in the SGI machine. For the FT
benchmarks the Omni compiler failed for 6 or more threads and we were unable
to resolve the problem. Fig. 3 show the results for the same set of applications in
the Compaq machine. We were not able to execute the FT benchmark reliably
with the Intel compiler for more than one thread, and this is why it is not
included in the corresponding plot in Fig. 3.

From the plots it is easily seen that OMPi outperforms Omni in most set-
tings. In addition, itsreleasing performance is in many cases comparable with
that of the commercial compilers. One important conclusion drawn from our
experimentations is that most research compilers suffer from problems related
to stability and conformance to the standard.

6 Conclusion

OMPi is an experimental OpenMP source-to-source compiler for C, that adheres
to the latest V.2.0 of the API. It has been developed in the University of Ioannina
and has reached a maturity and stability level that allows us to utilize it as an
educational tool in our Parallel Processing course both at the undergraduate
and the graduate level.

Performance-wise, it generates quite satisfactory code, which is in general
comparable or superior to other publicly available implementations, and reason-
able as compared to the native compilers we had access to.

Its most important strength, though, is its open and extensible architecture
which makes it an ideal research tool on parallel programming, runtime support
and synchronization mechanisms.

We are actively improving and extending OMPi’s features. Our next ma-
jor goal is the support of nested parallelism, whereby parallel regions in-
side other parallel regions are allowed to spawn new threads. We are also
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Fig. 2. NPB benchmarks on the SGI Origin 2000
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working on targeting DSM libraries so as to allow pure OpenMP program-
ming over clusters. OMPi and its source code is available at the following URL:
http://www.cs.uoi.gr/~ompi.
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