
Nested Parallelism in the OMPi OpenMP/C
compiler

Panagiotis E. Hadjidoukas and Vassilios V. Dimakopoulos

Department of Computer Science
University of Ioannina, Ioannina, Greece

{phadjido,dimako}@cs.uoi.gr

Abstract. This paper presents a new version of the OMPi OpenMP C
compiler, enhanced by lightweight runtime support based on user-level
multithreading. A large number of threads can be spawned for a parallel
region and multiple levels of parallelism are supported efficiently, without
introducing additional overheads to the OpenMP library. Management
of nested parallelism is based on an adaptive distribution scheme with
hierarchical work stealing that not only favors computation and data
locality but also maps directly to recent architectural developments in
shared memory multiprocessors. A comparative performance evaluation
of several OpenMP implementations demonstrates the efficiency of our
approach.

1 Introduction

Although nested parallelism was defined from the initial version of OpenMP,
several implementation and performance issues still remain open and need to be
answered. This necessity stems from the fact that both applications and end-
users require such functionality, and is further augmented as multi-core tech-
nology tends to increase the number of available processors. Nowadays, several
research and commercial OpenMP compilers support more than one levels of par-
allelism. With a few exceptions, however, most OpenMP implementations have
translated “OpenMP threads” to “kernel threads”, which are internally mapped
to system-scope POSIX threads or native OS threads. These implementations
support nested parallelism by extending their highly-optimized and fine-tuned
OpenMP runtime library for single-level parallelism.

Despite the fact that the above approach fulfills the requirements for the
common case, namely single-level parallelism with dynamic threads (where the
runtime system may adjust the number of working threads at will), it can cause
serious performance degradation when the number of threads is explicitly re-
quested by the user and exceeds the number of available processors. This excess
is quite common in the case of nested parallelism or in multiprogramming (non-
dedicated) environments.

This paper presents a new version of the OMPi OpenMP C compiler [3],
enhanced by a lightweight thread library that provides efficient runtime support



for multiple levels of parallelism. The whole configuration results in significantly
low parallelization overheads, especially when the number of OpenMP threads
increases, and provides efficient support of nested parallelism. In addition, it sim-
plifies thread management, favors computation and data locality and eliminates
the disadvantages of time sharing, including the unavoidable synchronization
overheads at the end of inner parallel regions.

The rest of this paper is organized as follows: Section 2 discusses related work.
Sections 3 and 4 present the OMPi OpenMP compiler and the lightweight thread
library respectively. Section 5 describes the management of nested parallelism.
Experimental results are included in Section 6. Finally, Section 7 discusses our
ongoing work.

2 Related Work

Several research efforts and compiler vendors support nested parallelism, creating
a new team of OpenMP threads to execute nested parallel regions.

The NANOS compiler [1] supports nested regions and OpenMP extensions
for processor groups. The runtime support of the NANOS Compiler is provided
by an efficient user-level threads library (NthLib), which assumes that dynamic
parallelism is always enabled and thus the number of spawned threads never
exceeds that of available processors. The Omni compiler [13] supports a lim-
ited form of nested parallelism, requiring a user-predefined fixed size for the
kernel thread pool, from where threads will be used for the execution of paral-
lel regions. Omni/ST [14], an experimental version of Omni equipped with the
StackThreads/MP library, provided an efficient though not portable implemen-
tation of nested irregular parallelism. The Balder runtime library of OdinMP [8]
is capable of fully handing OpenMP 2.0 including nested parallelism. Balder
uses POSIX threads as underlying thread library, provides efficient barrier and
lock synchronization and uses a pool of threads which is expanded whenever it
is necessary.

All vendors that support nested parallelism implement it by maintaining a
pool of kernel threads. GOMP [11], the OpenMP implementation for GCC, im-
plements its runtime library (libgomp) as a wrapper around the POSIX threads
library, with some target-specific optimizations for systems that support lighter
weight implementation of certain primitives. The GOMP runtime library allows
the reuse of idle threads from their pool only for non-nested parallel regions,
while threads are created dynamically for inner levels.

The OpenMP runtime library of the Sun Studio compiler [9] maintains a
pool of threads that can be used as slave threads in parallel regions. The user
can control both the number of threads in the pool and the maximum depth of
nested parallel regions that require more than one thread. Similarly, the basic
mechanism for threading support in the Intel compiler [16] is the thread pool.
The threads are not created until the first parallel region is executed, and only as
many as needed by that parallel region are created. Further threads are created as
needed by subsequent parallel regions. Threads that are created by the OpenMP



runtime library are not destroyed but join the thread pool until they are called
upon to join a team and are released by the master thread of the subsequent
team.

The Fujitsu PRIMEPOWER Fortran compiler [7] also supports nested paral-
lelism. Moreover, if the OpenMP application has only a single level of parallelism
then a high performance OpenMP runtime library is used. Finally, the IBM XLC
compilers support the execution of nested parallel loops [4].

3 The OMPi Compiler

OMPi is a source-to-source translator that takes as input C source code with
OpenMP V.2.0 directives and outputs equivalent multithreaded C code, ready to
be built and executed on a multiprocessor. The current version is fully V.2.0 com-
pliant, can target different thread libraries through a unified thread abstraction,
and includes many architecture-dependent as well as higher-level optimizations.
Finally, the compiler and the runtime libraries include support for the POMP
performance monitoring interface. OMPi is implemented entirely in C and has
been ported effortlessly on many different platforms, including Intel / Linux,
Sun / Solaris and SGI / Irix systems.

OMPi produces multithreaded C code. Its architecture is such that any spe-
cific thread library can be supported through a well-defined generic interface,
making OMPi quite extensible. It currently supports a number of thread li-
braries through the generic thread interface. They include a POSIX threads
based library (the default thread library target mainly for portability reasons)
which is highly tuned for single-level parallelism. Another library can be used in
Sun / Solaris machines, where the user has the option of producing code with
Solaris threads calls. It should be noted that the generic interface provides for
a transparent choice of the underlying thread library. That is, the user source
code is not affected in any way—the actual thread library that will be used is
only included at linking time.

4 Lightweight Runtime Support

The new internal threading interface in the runtime library of OMPi facilitates
the integration of arbitrary thread libraries. In order to efficiently support nested
parallelism, a user-level thread library, named psthreads, has been developed.

The psthreads library implements a two-level thread model, where user-level
threads are executed on top of kernel-level threads that act as virtual processors.
Each virtual processor runs a dispatch loop, selecting the next-to-run user-level
thread from a set of ready queues, where threads are submitted for execution.
An idle virtual processor extracts threads from the front of its local ready queue
but steals from the back of remote queues. The queue architecture allows the
runtime library to represent the layout of physical processors. For instance, a
hierarchy can be defined in order to map the coupling of processing elements in
current multi-core architectures [10].



Despite the user-level multithreading, the psthreads library is fully portable
because its implementation is based entirely on the POSIX standard. Its virtual
processors are mapped to POSIX threads, permitting the interoperability of
OMPi with third-party libraries and the co-existence of OpenMP and POSIX
threads in the same program. The primary user-level thread operations are pro-
vided by UthLib (Underlying Threads Library), a portable thread package. An
underlying thread is actually the stack that a psthread uses during its execution.
Synchronization is based on the POSIX threads interface. Locks are internally
mapped to POSIX mutexes or spinlocks, taking into account the non-preemptive
threads of the library. In addition, platform-dependent spin locks are utilized.

The application programming interface of psthreads is similar to that of
POSIX threads. Its usage simplifies the OpenMP runtime library since spawning
of threads is performed explicitly, while thread pooling is provided by the thread
library. The thread creation routine of psthreads allows the user to specify
the queue where the thread will be submitted for execution and whether it
will be inserted in the front or in the back of the specified queue. Moreover,
there exists a variant of the creation routine that accepts an already allocated
thread descriptor. This is useful for cases where the user implements its own
management of thread descriptors.

Efficient thread and stack management is essential for nested parallelism be-
cause a thread with a private stack should always be created since the runtime
library cannot know whether the running application will spawn a new level of
parallelism. An important feature of psthreads is the utilization of a lazy stack
allocation policy. According to this policy, the stack of a user-level thread is al-
located just before its execution. This results in minimal memory consumption
and simplified thread migrations. Lazy stack allocation is further improved with
stack handoff. In peer-to-peer scheduling, a finished thread picks the next de-
scriptor, creates a stack for that thread and switches to it. Usually, this stack is
extracted from a reuse queue. Using stack handoff, a finished thread re-initializes
its own state, by replacing its descriptor with the following thread’s descriptor,
and resumes its execution. By allocating the descriptors from the stack of the
parent thread (i.e. master), the activation of their recycling mechanism is also
avoided.

If native POSIX thread libraries followed a hybrid (two-level or M:N) im-
plementation, the runtime overheads would be reduced, allowing the creation of
several threads without additional performance cost, as shown in [12]. However,
all vendors have dropped the hybrid model and use a 1:1 mapping of POSIX
threads to kernel threads. Fortunately, Marcel [6] is a two-level thread library
that provides similar functionality and application programming interface to
POSIX threads. Marcel binds one kernel-level thread on each processor and
then performs fast user-level context-switches between user-level threads, hence
getting complete control of thread scheduling in user-land without any further
help from the kernel. We have successfully built and integrated a Marcel-based
module into the OMPi compiler, by replacing the corresponding threading calls
of the psthreads module.



5 Management of Nested Parallelism

According to OpenMP, when an application encounters the first of two nested
parallel loops, a new team of threads is created and the loop iterations are
distributed among these worker threads. Eventually, each thread will become
the master of a new team that will be created for the execution of the inner loop.
Assuming that the number of threads spawned in a parallel region is equal to
the number (P ) of processors, a kernel thread model will result in P ×P threads
that compete for hardware resources. Time-sharing can significantly increase
implicit synchronization overheads that are related to thread management and
dynamic loop scheduling. Even if static loop schedules are used, it is difficult for
the runtime library to decide how to bind inner threads to specific processors in
order to favor locality. A common approach that handles these problems uses a
fixed size pool of threads, limiting thus the number of created threads. Another
approach does not create additional threads but partitions the available threads
into groups, based on information provided by the programmer [1] or extracted
from the loop characteristics [4]. Despite the good locality and the low overheads
of grouping, it is hard to determine the number of groups and their size and this
can easily cause load imbalance.

We propose a straightforward approach able to handle general unstructured
nested parallelism. Due to the lightweight runtime support of psthreads, OMPi
can support efficiently a large number of threads and multiple levels of paral-
lelism. Moreover, the utilization of non-preemptive threads allows the runtime
library to manage parallelism explicitly, which is not possible for the case of ker-
nel threads. Specifically, the OpenMP runtime library utilizes a variant of the
all-to-all scheme in order to distribute work across the processors. Threads that
are spawned at the first level of parallelism are distributed cyclically and inserted
at the back of the ready queues. For inner levels, the threads are inserted in the
front of the ready queue that belongs to the virtual processor they were created
on. Since an idle virtual processor extracts threads from the front of its local
queue and the back of the remote ones, this scheme favors the exploitation of
data locality of inner levels of parallelism.

Our approach can be easily generalized to include the latest developments
of shared memory architecture, like multi-core and SMT processors. The work
stealing mechanism has been designed to work hierarchically, assuming the ex-
istence of thread groups, as shown in Fig. 1. Specifically, the virtual processors
are organized into hierarchical groups of size that is equal to a power of 2 (i.e. 2,
4, 8, etc), according to the level of hierarchy. Thus, an idle virtual processor first
examines the ready queue of its adjacent virtual processor in the two-processor
group (level 1, size 2) where it belongs to, then it tests the queues of the rest two
processors in the quad-processor group (level 2, size 4), etc. Moreover, due to
our two-level thread model, there is a 1:1 mapping between virtual and physical
processors and, thus, the queue hierarchy of the runtime library can be mapped
directly to the hardware architecture.

The number of groups and their size can be set explicitly using an OpenMP
extension (e.g. [1]) or appropriate machine description. In contrast to NANOS



GroupSize = 2;

while (GroupSize <= Virtual Processors) {

GroupId = MyID / GroupSize;

GroupBaseVP = GroupId*GroupSize;

vp = (MyID + 1) % GroupSize + GroupBaseVP;

while ((thread == NULL) && (vp != MyID)) {

if (!visited[vp]) {

visited[vp] = 1;

thread = DequeueWork(vp);

}

vp = (vp + 1) % GroupSize + GroupBaseVP;

}

GroupSize *= 2;

}

/* execute thread */

Fig. 1. Hierarchical work-stealing algorithm for uniform thread groups

groups, our approach supports inter-group stealing and, based on these groups,
determines how idle processors access ready queues. Although an idle proces-
sor in Omni/ST was able to issue work-stealing requests, the mechanism was
heavyweight and lacked portability due to the required intervention of the re-
mote processor. The dependence of Omni/ST on the StackThreads compiler, a
patched version of GNU C, did not allow its further usage. On the contrary, work
stealing in OMPi/psthreads is performed asynchronously and virtual processors
access remote queues in a uniform way. Furthermore, our software configuration
allows the integration of any native compiler. Similarly, the Marcel package uti-
lizes the BubbleSched scheduler [15], a framework that allows the distribution
of threads over the hierarchy of the computer so as to benefit from cache effects
and to avoid NUMA factor penalties as much as possible. The integration of
Marcel threads into OMPi will allow the exploitation of the above framework in
an OpenMP environment. A further discussion on this issue is beyond the scope
of this paper.

6 Experimental Results

We performed our experiments on a Compaq Proliant ML570 server with 4
Intel Xeon III CPUs running Debian Linux (2.6.6). We provide comparative
performance results for the Intel C++ compiler (v. 9.1), GNU GCC 4.2, Omni
1.6 and the new version of OMPi. The native compiler for both OMPi and Omni
is GNU GCC.

Our first experiment demonstrates our lightweight runtime support as the
number of OpenMP threads increases. Specifically, we use the EPCC microbench-
marks [2] to measure the OpenMP runtime overheads using from 2 up to 32
threads on a dedicated machine.

Figures 2 presents the overheads of the for and lock/unlock OpenMP con-
structs. The overhead of for is lower if user-level thread libraries (marcel and



lock / unlock

0

1

2

3

4

5

6

7

8

9

10

0 4 8 12 16 20 24 28 32
OpenMP threads

Ov
er

he
ad

 (µ
s)

icc
gcc
omni
ompi/posix
ompi/marcel
ompi/psthr

#pragma omp for

0

50

100

150

200

250

300

350

400

0 4 8 12 16 20 24 28 32
OpenMP threads

Ov
er

he
ad

 (µ
s)

icc
gcc
omni
ompi/posix
ompi/marcel
ompi/psthr

Fig. 2. Runtime overheads for large number of threads

psthreads) are used. The Intel compiler and the OMPi compiler with the na-
tive POSIX threads library also achieve good performance. On the contrary, both
Omni and GCC exhibit significant runtime overhead as the number of OpenMP
threads increases. The overhead of OpenMP locks does not depend on the num-
ber of threads for all the cases but the Intel compiler. This is attributed to the
spinlock-based synchronization of the Intel compiler, which results in the lowest
overhead for 2 and 4 OpenMP threads but fails to maintain stability when the
number of threads exceeds the number of physical processors. To avoid this prob-
lem for Omni, its mutex-based lock primitives are used in all the experiments.

Our second experiment focuses on the evaluation of OpenMP runtime sup-
port for nested parallelism. For this purpose, we have appropriately extended the
EPCC microbenchmarks. Specifically, the core benchmark routine for a given
construct (e.g. parallel) is called several times within a parallel loop. If nested
parallelism is tested, the loop is parallelized and these tasks are executed in
parallel, otherwise they are executed sequentially as in the original version of
the microbenchmarks. We measure the total execution time of the tasks and we
compute the mean of the measured runtime overhead for each individual task.

omp_set_dynamic(0);

omp_set_nested(1);

t0 = omp_get_wtime();

#if defined(TEST_NESTED_PARALLELISM)

#pragma omp parallel for schedule(dynamic,1)

#endif

for (i = 0; i < ntasks; i++)

testpr(i);

t1 = omp_get_wtime();

Fig. 3. Extended micro-benchmarks for nested parallelism



#pragma omp parallel - 4 tasks

0
2
4
6
8

10
12
14
16
18
20

Single Level Nes ted

Ex
ec

uti
on

 Ti
me

 (s
ec

) icc
gcc
omni
ompi/marcel
ompi/psthreads

#pragma omp parallel - 4 tasks

0
5

10
15
20
25
30
35
40
45

Overhead (nested) / Overhead (Single Level)

icc
gcc
omni
ompi/marcel
ompi/psthreads

Fig. 4. Runtime behavior of the OpenMP parallel construct

#pragma omp for - 4 tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Single Level Nes ted

Ex
ec

ut
ion

 Ti
me

 (s
ec

) icc
gcc
omni
ompi/marcel
ompi/psthreads

#pragma omp for - 4 tasks

0
5

10
15
20
25
30
35
40
45
50

Overhead (nes ted) / Overhead (Single Level)

Ov
er

he
ad

 (µ
s)

icc
gcc
omni
ompi/marcel
ompi/psthreads

Fig. 5. Runtime behavior of the OpenMP for construct

Figures 4 and 5 present the runtime behavior of the parallel and for con-
structs respectively. The left figures show the total execution time and the right
ones how many times the runtime overhead is increased when nested parallelism
is enabled. For the parallel construct, both the execution time and the cor-
responding overhead are significantly increased for the Intel, GCC and Omni
compilers. On the other hand, for both configurations of OMPi the total execu-
tion time is slightly decreased and the runtime overhead remains almost stable.
This is expected because OMPi exploits better the task parallelism of the bench-
mark and restrains the contention between OpenMP threads. The for construct
exhibits similar behavior except for the case of GCC, which does not suffer from
high contention possibly due to its platform-specific atomic primitives.

The last experiment demonstrates our efficient support of nested parallelism
using PCURE [5], an OpenMP implementation of a hierarchical data clustering
algorithm. PCURE consists of an initialization phase and the core clustering
algorithm, which is repeated until the requested number of clusters has been
computed. The asymmetry and non-determinism of the algorithm requires the
exploitation of nested parallelism, which is expressed with two parallel nested
loops. The inner loop contains a reduction on a pair of data, an operation that
is not directly supported by OpenMP. Therefore, a team of threads is spawned
and each thread keeps the partial results (minimum distance and index) in its



PCURE - Update Phase

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

icc gcc omni ompi/marcel ompi/psthr
OpenMP Compiler

Sp
ee

du
p

T=1
T=2
T=4

Fig. 6. Speedups of the parallel data clustering algorithm

local memory. When the iterations of the inner loop have been exhausted, the
reduction operation takes place, with each thread checking and updating the
global result within a critical section.

For both loops of the update phase, the guided scheduling policy is used.
The input dataset contains 5000 records with 24 features and the clustering
stops after 4000 steps. The performance speedups obtained for the update phase
of PCURE are depicted in Figure 6. The Intel and Omni compilers perform
best when 2 threads are used because the actual number of kernel threads from
both levels of parallelism is equal to the number of physical processors (4). For
4 threads per level, the speedup drops mostly due to the higher contention of
threads and the increased overheads of the runtime libraries. For GCC, however,
the speedup is improved slightly when 4 threads are used. On the other hand,
PCURE scales well for both OMPi configurations (marcel and psthreads). Let
us note here that PCURE is a data intensive application so its scalability is
limited by the low memory bandwidth of the bus-based SMP machine.

7 Conclusions and Future Work

This paper presented an OpenMP implementation based on user-level multi-
threading and its advantages on the exploitation of nested parallelism compared
to the traditional kernel thread based approaches. Our ongoing work includes the
implementation of the workqueuing model in the OMPi compiler and the evalua-
tion of our approach for nested parallelism on large scale multiprocessor systems.
The psthreads library has also been integrated into the Omni and GCC com-
pilers, while our future plans include open-source OpenMP Fortran compilers.
The source code of OMPi is available at http://www.cs.uoi.gr/~ompi.



References

1. E. Ayguade, M. Gonzalez, X. Martorell, J. Labarta, N. Navarro, and J. Oliver.
NanosCompiler: Supporting Flexible Multilevel Parallelism in OpenMP. Concur-
rency: Practice and Experience, 12(12):1205–1218, October 2000.

2. J. M. Bull. Measuring Synchronization and Scheduling Overheads in OpenMP. In
Proc. of the 1st European Workshop on OpenMP (EWOMP ’99), Lund, Sweden,
September 1999.

3. V. V. Dimakopoulos, E. Leontiadis, and G. Tzoumas. A Portable C Compiler for
OpenMP V.2.0. In Proc. of the 5th European Workshop on OpenMP (EWOMP
’03), Aachen, Germany, October 2003.

4. A. Duran, R. Silvera, J. Corbalan, and J. Labart. Runtime Adjustment of Parallel
Nested Loops. In Proc. of the International Workshop on OpenMP Applications
and Tools (WOMPAT ’04), Houston, TX, USA, May 2004.

5. P. E. Hadjidoukas and L. Amsaleg. Parallelization of a Hierarchical Data Clustering
Algorithm Using OpenMP. In Proc. the 2nd International Workshop on OpenMP
(IWOMP ’06), Reims, France, June 2006.

6. Team RUNTIME INRIA. Marcel: A POSIX-compliant thread library for hierar-
chical multiprocessor machines. Available at: http://runtime.futurs.inria.fr/
marcel.

7. H. Iwashita, M. Kaneko, M. Aoki, K. Hotta, and M. van Waveren. On the Im-
plementation of OpenMP 2.0 Extensions in the Fujitsu PRIMEPOWER compiler.
In Proc. of the International Workshop on OpenMP: Experiences and Implemen-
tations (WOMPEI ’03), Tokyo, Japan, November 2003.

8. S. Karlsson. A Portable and Efficient Thread Library for OpenMP. In Proc. of the
6th European Workshop on OpenMP (EWOMP ’04), Stockholm, Sweden, October
2004.

9. Sun Microsystems. Sun Studio 10: OpenMP API User’s Guide. Available at:
http://docs.sun.com/app/docs/doc/819-0501.

10. D. S. Nikolopoulos, E. D. Polychronopoulos, and T. S. Papatheodorou. Efficient
Runtime Thread Management for the Nanothreads Programming Model. In Proc.
of the 2nd IEEE IPPS/SPDP Workshop on Runtime Systems for Parallel Pro-
gramming, volume 1388, pages 183–194, Orlando, FL, USA, April 1998.

11. D. Novillo. OpenMP and automatic parallelization in GCC. In Proc. of the 2006
GCC Summit, Ottawa, Canada, June 2006.

12. R. Rufai, M. Bozyigit, J. Alghamdi, and M. Ahmed. Multithreaded Parallelism
with OpenMP. Parallel Processing Letters, 15(4):367–378, 2005.

13. M. Sato, S. Satoh, K. Kusano, and Y. Tanaka. Design of OpenMP Compiler for
an SMP Cluster. In Proc. of the 1st European Workshop on OpenMP (EWOMP
’99), Lund, Sweden, September 1999.

14. Y. Tanaka, K. Taura, M. Sato, and A. Yonezawa. Performance Evaluation of
OpenMP Applications with Nested Parallelism. In Proc. of the Fifth Workshop on
Languages, Compilers and Run-Time Systems for Scalable Computers (LCR ’00),
Rochester, NY, USA, May 2000.

15. S. Thibault. A Flexible Thread Scheduler for Hierarchical Multiprocessor Ma-
chines. In Proc. of the 2nd International Workshop on Operating Systems, Pro-
gramming Environments and Management Tools for High-Performance Computing
on Clusters (COSET-2), Cambridge, USA, June 2005.

16. X. Tian, J. P. Hoeflinger, G. Haab, Y-K Chen, M. Girkar, and S. Shah. A com-
piler for exploiting nested parallelism in OpenMP programs. Parallel Computing,
31:960–983, 2005.


