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Abstract

In this work we present a microbenchmark methodology foessiag the over-
heads associated with nested parallelism in OpenMP. Olnigees are based on
extensions to the well known EPCC microbenchmark suiteahatv measuring
the overheads of OpenMP constructs when they are effeciaden levels of par-
allelism. The methodology is simple but powerful enough &ad enabled us
to gain interesting insight into problems related to impéeting and supporting
nested parallelism. We measure and compare a humber of caiahend free-
ware compilation systems. Our general conclusion is théewlested parallelism
is fortunately supported by many current implementatitims performance of this
support is rather problematic. There seem to exist issuéshitave not yet been
addressed effectively, as most OpenMP systems do not exhijpaceful reaction
when made to execute inner levels of concurrency.

1 Introduction

OpenMP [1] has become a standard paradigm for shared memagyamming, as
it offers the advantage of simple and incremental paraliejram development, in a
high abstraction level. Nested parallelism has been a rfegture of OpenMP since its
very beginning. As a programming style, it provides an eh¢galution for a wide class
of parallel applications, with the potential to achieve staitial processor utilization,
in situations where outer-loop parallelism simply can nbBespite its significance,
nested parallelism support was slow to find its way into OpBrimiplementations,
commercial and research ones alike. Even nowadays, thiedesapport is varying
greatly among compilers and runtime systems.

For applications that have enough (and balanced) outgripapallelism, a small
number of coarse threads is usually enough to produceasztisy speedups. In many
other cases though, including situations with multipleteédoops, or recursive and
irregular parallel applications, threads should be ableréate new teams of threads



because only a large number of threads has the potentiahievacgood utilization of
the computational resources.

Although many contemporary OpenMP compilation systemsigeosome kind of
support for nested parallelism, there has been no evatuatithe overheads incurred
by such a support. The well known EPCC microbenchmark sgit8][is a valuable
tool with the ability to reveal various synchronization astheduling overheads, but
only for single-level parallelism.

In this work, we present a set of benchmarks that are basedtenséons to the
EPCC microbenchmarks and allow us to measure the overhé&fzemMP systems
when nested parallelism is in effect. To the best of our keog@e this is the first study
of its kind as all others have been based on application sipsdd, 5, 6, 7] which give
overall performance indications but do not reveal poténtiastruct-specific problems.

The paper is organized as follows. In Section 2 we give anvwiserof OpenMP
specification and the current status of various implemamtaiwith respect to nested
parallelism. In Section 3 we present the microbenchmarkietail. Section 4 reports
on the performance of several OpenMP compilation systenenwked to execute our
benchmarks. The section also includes a discussion of alin§js. Finally, Section 5
concludes this work.

2 Nested Parallelism in OpenM P

The OpenMP specification leaves support for nested pasafiels optional, allowing
an implementation to serialize the nested parallel regierexecute it by only 1 thread.
In implementations that support nested parallelism, the can choose to enable or
disable it either during program startup through@é#_NESTED environmental vari-
able or dynamically at runtime through anp_set _nest ed() call. The number of
threads that will comprise a team can be controlled bpthe set _num t hr eads()
call. Because this is allowed to appear only in sequentgibres of the code, there is
no way to specify a different number of threads for inner levkrough this call; to
overcome this, the current version of OpenMP (2.5) providesum t hr eads( n)
clause. Such a clause can appear in a (negtadal | el directive and request that
this particular region be executed by exactlthreads.

However, the actual number of threads dispatched in a (@gste al | el region
depends also on other things. OpenMP provides a mechanigimefdynamic adjust-
ment of the number of threads which, if activated, allows the iempéntation to spawn
fewer threads than what is specified by the user. In addibayhamic adjustment,
factors that may affect the actual number of threads incthdenesting level of the
region, the support/activation of nested parallelism dredpeculiarities of the imple-
mentation. For example, some systems maintain a fixed pdbtedds, usually equal
in size to the number of available processors. Nested pésafl is supported as long
as free threads exist in the pool, otherwise it is dynamjiadiBabled. As a result, a
nestedpar al | el region may be executed by a varying number of threads, dépgend
on the current state of the pool.

In general, it is a recognized fact that the current versidbgenMP has a number
of shortcomings when it comes to nested parallelism [7],thede exist issues which



need clarification. Some of them are settled in the upcoméngion of the API (3.0),
which will also offer a richer functional API for the applitan programmer.

According to the OpenMP specification, an implementatioictvierializes nested
par al | el regions, even if nested parallelism is enabled by the usemmsidered
compliant. An implementation can claisupport of nested parallelism if nestexr al | el
regions may be executed by more than 1 thread. Because offfibalty in handling
efficiently a possibly large number of threads, many impletagons provide support
for nested parallelism but with certain limitations. Fomaexple, there exist systems
that support a fixed number of nesting levels; some othesaah unlimited number
of nesting levels but have a fixed number of simultaneoudiyathreads.

Regarding proprietary compilers, not all of them supportee parallelism and
some support it only in part. Among the ones that providemitéid support in their
recent releases are the FujitsRIMEPOWERcompilers, the HP compilers for the HP-
UX 11ioperating system, the Intel compilers [8] and the Stua® compilers [9]. Full
support for nested parallelism is also provided in the tatession of the well known
open-source&sNU Compiler CollectionGcc 4.2, through the libGOMP [10] runtime
library.

Research/experimental OpenMP compilers and runtimersgdteat support nested
parallelism include MaGOMP, a port of ibGOMP on top of the gl threading li-
brary [11], the Omni compiler [12, 6] and OMPi [13, 14].

3 Themicrobenchmark methodology

The EPCC microbenchmark suite [2, 3] is the most commonld tea for measuring
runtime overheads of individual OpenMP constructs. Howetes only applicable to
single-level parallelism. This section describes the rsittns we have introduced to
this microbenchmark suite for the evaluation of OpenMPimatsupport under nested
parallelism.

The technique used to measure the overhead of OpenMP dégcis to compare
the time taken for a section of code executed sequentiatly the time taken for the
same code executed in parallel, enclosed in a given dieectiet 7, be the execu-
tion time of a program omp processors and; be the execution time of its sequential
version. The overhead of the parallel execution is defin¢deaotal time spent collec-
tively by thep processors over and abo¥eg, the time required to do the “real” work,
i.e. Toun, = pT, — Th. The per-processor overhead is tHEn= T, — 71 /p. The
EPCC microbenchmarks [2] measufgfor the case of single-level parallelism using
the method described below.

A reference time[,., is first fixed, which represents the time needed for a call
to a particular function namedel ay() . To avoid measuring times that are smaller
than the clock resolutior;. is actually calculated by calling theel ay () function
sufficiently many times:

for (j =0; j < innerreps; j++)
del ay(del ayl engt h);

and dividing the total time by nner r eps.



Then, the same function call is surrounded by the OpenMPtearisinder mea-
surement, which in turn is enclosed withirpar al | el directive. For example, the
testfor () routine that measures tfeor directive overheads, actually measures
the portion shown in Fig. 1 and then divides itibgner r eps, obtainingZ},. Notice,
that because the measurement includes the time taken hyathal | el directive,

i nnerr eps is large enough so that the overhead of the enclogsaraal | el direc-
tive can be ignored. The overhead is derivedas T'., since the total work done needs
actuallypT;. sequential time. Of course, to obtain statistically meghihresults, each
overhead measurement is repeated several times and theaméatandard deviation
are computed over all measurements. This way, the micrdimeaik suite neither re-
quires exclusive access to a given machine nor is seriotifélgted by background
processes in the system.

testfor() {

<start neasurenent>
#pragma onp parallel private(j)

for (j =0; j <innerreps; j++)
#pragma onp for
for (i =0; i < p; i++)
del ay(del ayl engt h) ;
}

<stop neasurenent >

Figure 1: Portion of thé est f or () microbenchmark routine.

3.1 Extensionsfor nested parallelism

To study how efficiently OpenMP implementations supportegparallelism, we have
extended both the synchronization and the scheduling iméerchmarks of the EPCC
suite. According to our approach, the core benchmark reudtin a given construct
(e.g. thet est f or () discussed above) is represented biask. Each task has a
unique identifier and utilizes its own memory space for sigiits table of runtime
measurements. We create a team of threads, where each naftimeteam executes
its own task. When all tasks finish, we measure their totat@tien time and compute
the global mean of all measured runtime overheads. Our appiie outlined in Fig. 2.
The team of threads that execute the tasks expresses tihéewatef parallelism, while
each benchmark routine (task) contains the inner level c&ligdism.

In Fig. 2, if the outer loop (lines 5-7) is not parallelizelde ttasks are executed in
sequential order. This is equivalent to the original versid the microbenchmarks,
having each core benchmark repeated more than once. Onhbeland, if nested
parallelism is enabled, the loop is parallelized (lines)2add the tasks are executed
in parallel. The number of simultaneously active tasks ignabby the number of
OpenMP threads that constitute the team of the first levehddlfelism. To ensure that



voi d nested_benchmark(char *nane, func_t original func) {
int task_id;
double tO, t1

t0 = getclock()

#i f def NESTED_PARALLELI SM

#pragma onp parallel for schedule(static,1)

#endi f

for (task_id = 0; task_id < p; task_id++) {
(*original func)(task_id);

O~NO U WNPE

}
t1l = getclock();

<conpute gl obal statistics>
<print construct nane, elapsed tine (t1-t0), statistics>

mai n() {
<conpute reference time>
onp_set _num t hreads(onp_get _num procs());
onp_set _dynani ¢(0);
nest ed_benchmar k(" PARALLEL", testpr);
nest ed_benchmar k(" FOR', testfor);

Figure 2: Extended microbenchmarks for nested paralladganhead measurements

each member of the team executes exactly one task, a sthédide with chunksize
of 1 was chosen at line 3. In addition, to guarantee that then®i® runtime library

does not assign fewer threads to inner levels than in the oots dynamic adjustment
of threads iglisabled through a call tonp_set _dynami c(0) .

By measuring the aggregated execution time of the tasks sei¢he microbench-
mark as an individual application. This time does not ontlude the parallel portion
of the tasks, i.e. the time the tasks spend on measuring titieneioverhead, but also
their sequential portion. This means that even if the mearhmad increases when
tasks are executed in parallel, as expected due to the highaver of running threads,
the overall execution time may decrease.

In OpenMP implementations that provide full nested paliate support, inner
levels spawn more threads than the number of physical pgocgswvhich are mostly
kernel-level threads. Thus, measurements exhibit higheatons than in the case of
single-level parallelism. In addition, due to the presesfaaore than one team parents,
the overhead of the parallel directive increases in mostedmpntations, possibly caus-
ing overestimation of other measured overheads (see Figoljesolve these issues,
we increase the number of internal repetitionarfer r eps) for each microbench-
mark, so as to be able to reach the same confidence levels .(25fital subtle point
is that when the machine is oversubscribed, each procegistevtimeshared among
multiple threads. This leads to an overestimation of therlee@ds because the mi-
crobenchmarks account for the sequential wdfkK) (multiple times. We overcame



this by decreasindel ayl engt h so that7, becomes negligible with respect to the
measured overhead.

4 Resaults

All our measurements were taken on a Compag Proliant ML5RA@&sevith 4 Intel
Xeon Il single-core CPUs running Debian Linux (2.6.6). Wdtgh this is a relatively
small SMP machine, size is not an issue here. Our purposecie#fte a significant
number of threads; as long as a lot more threads than theblegrocessors are active,
the desired effect is achieved. We provide performancétesfen two free commercial
and three freeware OpenMP C compilers that support nestatlgdsm. The commer-
cial compilers are the Intel C++ 10.0 compilec¢) and Sun Studio 12suncc) for
Linux. The freeware ones agcc4.2.0, Omni 1.6 andmpi 0.9.0. As Omni an@®MPi
are source-to-source compilers, we have used as the native back-end compiler for
both of them. In addition, becausevpi is available with a multitude of threading
libraries, we have used two different configurations fomg&mely ompi+POSIxXand
OMPI+PSTHREADS The first one uses the default runtime library, basedosix
threads which, although optimized for single-level pai&, provides basic support
for nested parallelism. The second one uses a high-perfa@rantime library based
onpPosixthreads and portable user-level threads [14].

Most implementations start by creating an initial pool ofethds, usually equal
in size to the number of available processors, which is 4 incase. Because the
number of threads in the second level is implementation nidgat, in all our exper-
iments we have explicitly set it to 4 through anp_set _num t hr eads(4) call
and we have disabled the dynamic adjustment of the numbdmreads. I.e., when
executing the second level of parallelism, there are il tbta4 = 16 active threads.
However, some implementations cannot handle this sitmatio particular, the Omni
compiler andoMPi+POSIX cannot create more threads on the fly, even if needed; they
support nested parallelism as long as the initial pool hizstideads, otherwise nested
parallel regions get serialized. To overcome this probl&Emthose two implemen-
tations we set th@VP_NUM THREADS environmental variable equal to 16 before
executing the benchmarks, so that the initial pool is forettave 16 threads; the
onp_set _num t hreads(4) call then limits the outer level to exactly 4 threads,
while all 16 threads are utilized in the inner level. We havewever, been careful
not to give those two implementations the advantage of zesat creation overhead
(since with the above trick the 16 threads are pre-creatgdicluding a dummy nested
parallel region at the top of the code. This way, all impletagdons get a chance to
create 16 threads before the actual measurements commence.

A selection of the obtained results is given in Figs 3—4, f@ synchronization
and scheduling microbenchmarks. Fig. 3 includes the oeghef all six systems for
theparal l el, for, singleandcritical constructs. Each plot includes the
single-level overheads of each system for reference.

As the number of active threads increases when nested gimmallis enabled,
the overheads are expected to increase accordingly. Wevehdeowever, that the
par al | el construct does not scale well for the Intelcc and Omni compilers, al-
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thoughicc remains quite fast. For all three of them, the runtime ovadhis more
than an order of magnitude higher in the case of nested plsail. Foricc this could
be attributed, in part, to the fact that threads join a unicemral pool before getting
grouped to teams [8]. On the other hand, bothri+PSTHREADSandsuNccclearly
scale better and their overheads increase linearly, sitkcc, however, exhibiting
higher overheads thaswpi for both single level and nested parallelism.

Similar behavior is seen for theor andsi ngl e constructs, except thaicc
shows significant but not excessive increase. The Sun cenmgakems to handle loop
scheduling quite well showing a decrease in the actual @&t This, combined with
the decrease in the&l ngl e overheads, reveals efficient team management since both
constructs incur mostly inter-team contention. Espegimlithe si ngl e construct,
OMPI+PSTHREADSshows the advantage of user-level threading: inner levelg:xe-
cuted by user-level threads, which mostly live in the presoesvhere the parent thread
is, eliminating most inter-team contention and the assediaverheads. In contrast,
the (unnamedgri ti cal construct incurs global contention since all threads from
all teams must compete for a single lock protecting theoalittode section. Over-
heads are increased significantly in all systems, suggestatunnamed cri ti cal
constructs should be avoided when nested parallelism igresl

Fig. 4 includes results from the scheduling microbenchsarkor presentation
clarity, we avoided reporting curves for a wide range of dtsires; instead we include
only results for static, dynamic and guided schedules witthanksize of 1, which
represent the worst cases, with the highest possible stthgdwerhead. Schedul-
ing overheads increase, as expected, for the static anddjazhedules in the case of
nested parallelism. However, the overheads of the dynachiediiling policy seem
to increase at a slower rate and in some casesi€¢C GcCc andOMPi+PSTHREADY
actually decrease, which seems rather surprising. Thidbeagxplained by the fact
that for this particular scheduling strategy and with thastigular chunk size, the over-
heads are dominated by the excessive contention amongrtiegzding threads. With
locality-biased team management, which groups all teagatts onto the same CPU,
and efficient locking mechanisms, which avoid busy waitithgg, contention has the
potential to drop sharply, yielding lower overheads thathimsingle-level case. This
appears to be the case for the Sun Studio @ad compilers. ompi with user-level
threading achieves the same goal because it is able to asstdnindependent loop
to a team of non-preemptive user-level OpenMP threads thatlynrun on the same
processor. However, as the chunksize increases, assigiedg¢come coarser and any
gains due to contention avoidance vanish. This is confirmebe last plot of Fig. 4;
with a chunksize of 8 all implementations show increasedhwads with respect to
the single-level case.

In Fig. 5 we present the results of our next experimentatiea:delved into dis-
covering how the behavior of our subjects changes for diffepopulations of threads.
We fixed the number of first-level threads to 4 but changed ¢sersd-level teams to
consist of 2, 4 and 8 threads, yielding in total 8, 16 and 3@&tis on the 4 processors.
Because this was only possible usingthen t hr eads() clause (an OpenMP V.2.0
addition), Omni was not included, as it is only V.1.0 comptiaFig. 5 contains one
plot per compiler, including curves for most synchroniaatmicrobenchmarks. The
results confirmed what we expected to see: increasing théeuof threads in the
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second level leads to increased overheads. Due to spadations, we cannot com-
ment on every aspect of the plots but we believe that theyeptdahe situation very
vividly. It is enough to say that for some implementationiagis seems to get out of
control, especially fopar al | el andr educt i on. By far, the most scalable behav-
ior is exhibited by themMpPi+PSTHREADSSetup, although in absolute numbers the Intel
compiler is in many cases the fastest.

5 Conclusion

In this paper we presented an extension to the EPCC micrbbsark suite that allows
the measurement of OpenMP construct overheads under nestalielism. Using
this extension we studied the behavior of various OpenMPpilation and runtime
systems when forced into inner parallel regions. We diseléhat many implemen-
tations have scalability problems when nested paralleléssemabled and the number
of threads increases well beyond the number of availablegssors. This is most
probably due to the kernel-level thread model the majofiityhe implementations use.
The utilization of kernel threads introduces significargideads in the runtime library.
When the number of threads that compete for hardware reessignificantly exceeds
the number of available processors, the system is overtbade the parallelization
overheads outweigh any performance benefits. Finally,dbbees quite difficult for
the runtime system to decide the distribution of innerdélreeads to specific proces-
sors in order to favor computation and data locality.

Although our study was limited to two nesting levels, it b@eaclear that studying
deeper levels would only reveal worse behavior. It is evidbat there are several
design issues and performance limitations related to dgsdeallelism support that
implementations have to address in an efficient way. In tree figture we plan to
expand the microbenchmark suite appropriately so as tolbd¢@btudy the overheads
at any arbitrary nesting level.
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