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Abstract. This paper presents a software infrastructure for high per-
formance numerical optimization on clusters of multicore systems. At
the core, a runtime system implements a programming and execution
environment for irregular and adaptive task-based parallelism. Building
on this, we extract and exploit the parallelism of a global optimization
application at multiple levels, which include Hessian calculations and
Newton-based local optimizations. We discuss parallel implementations
details and task distribution schemes for managing nested parallelism.
Finally, we report experimental performance results for all the compo-
nents of our software system on a multicore cluster.
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1 Introduction

Numerical optimization is a useful tool that has been widely used on many sci-
entific problems such as space trajectory calculation and computation of optimal
shapes for automobile or aircraft components. Optimization problems, especially
global ones, have high computational demands because of the substantial exe-
cution time and the possibly multiple local mimima of the objective function to
minimize. Exploitation of parallelism at several levels such as function evalua-
tions, numerical computations and the optimization algorithms themselves can
drastically reduce the time required to find a solution.

The Multistart method is a standard and widely used scheme for dealing
with global optimization problems. According to this method, a local optimiza-
tion procedure is applied to a number of randomly selected points. Local op-
timization can be based on the Newton method with Hessian modification, a
general and powerful method for multidimensional non-linear optimization that
makes use of first and second derivatives of the objective function. This, in turn,
introduces further computational complexity as derivative estimation via finite
differentiation requires a number of function evaluations.



Task-based parallelism, as expressed by the master-worker programming para-
digm, can be an effective approach for a cluster-aware implementation of global
optimization methods such as Multistart. Function evaluations are mapped to
tasks and assigned to the workers. The dynamic load balancing of the model
further enhances its suitability. A naive implementation of the model, however,
cannot meet all the requirements that Multistart imposes. First, the large ex-
pected number of spawned tasks (typically on the order of 106) affect the scal-
ability as the single master becomes a bottleneck. Secondly, the exploitation
of nested parallelism requires advanced runtime techniques, able to provide effi-
cient management of processing elements. Additionally, it is important to have a
hardware-independent solution that transparently uses multi-threading to fully
exploit the physically shared memory of smp/multi-core systems.

In this paper, we present a software infrastructure that deals with all the
above limitation issues that concern the parallelization of the Multistart method.
At the core of the system there is torc, a novel runtime environment for pro-
gramming and executing irregular and adaptive master-worker applications on
multi-core smps and clusters of such machines. As such, torc targets both mes-
sage passing and shared memory programs by exporting an api that provides
ease of programming and transparent load balancing without requiring any in-
teraction with the low-level message passing primitives. Building on torc, we
design a standalone numerical differentiation software package (pndl) that pro-
vides routines for gradient and Hessian computations. We manage to extract
parallelism at all possible levels in a straightforward and seamless manner, while
we present several task distribution schemes, which are combined with the work
stealing mechanisms of torc. Finally, we present the parallelization of a Newton-
based Multistart method using both torc and pndl to execute multiple local
optimizations and gradient/Hessian calculations. The experimental evaluation
on a dedicated multicore cluster demonstrates the efficiency of our system.

The rest of this paper is organized as follows: Section 2 gives a brief intro-
duction to the non-linear global optimization problem. Section 3 discusses the
parallelization issues of Multistart. Sections 4 and 5 present the torc tasking
library and pndl. Experimental evaluation and related work are reported in
Sections 6 and 7 respectively. We conclude with a discussion in Section 8.

2 Numerical optimization

The task of numerical optimization is to locate (approximate) a minimizer of
a generally multidimensional objective function. The mathematical formulation
is

min
x∈Rn

f(x) (1)

where x ∈ Rn is a real vector and f : Rn → R the objective function. There
exist a plethora of applications in physics, chemistry, engineering, and economics
that can be formulated as optimization problems. Predicting the tertiary pro-
tein structures, defining optimal sea routes, calculating bound states for few
body systems, tuning all kinds of machine learning models and identifying the
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seismic properties of a piece of the earths crust, are all examples of real world
applications that can be tackled as optimization problems.

An optimization algorithm is a sequential procedure that, beginning from a
starting point x0 ∈ S, generates a sequence of iterates {xk}∞k=0 that terminates
when the solution point is approximated with a prescribed accuracy. In deciding
how to move from one iterate xk to the next the algorithm uses information
about the function at xk (function value, first or second order derivatives). A
general class of optimization algorithms use second order derivative information
of the objective function and use it to build and minimize a quadratic model
around the current iteration. The main representative of this class is the Newton
method. At each iterate, the Newton method makes use of first and second order
derivative information to proceed to the next point. This can be achieved using
a line search algorithm which searches along a descent direction pk ∈ Rn for an
iterate with lower function value. The distance to move along pk can be found by
solving the following one-dimensional minimization problem that is to find a step
length α that minimizes f(xk + αpk). The main computational cost of a single
Newton iteration is determined by the objective function and the derivatives
calculation that are used to compute the search direction.

In many cases derivatives cannot be expressed analytically because the un-
derlying functions are represented by large and complicated computer codes. In
these cases finite differencing is an approach for calculating the first and sec-
ond order derivatives of an n−dimensional objective function at a point x by
examining the objective function behavior on small finite perturbations around
x. The number of function evaluations depends on the order of the derivative
(first or second) and on the requested accuracy (the larger accuracy the more
function evaluations). For the gradient vector at least n+1 function evaluations
are required and for the Hessian at least n(n + 1)/2. Two of the most popular
formulas for approximating gradient and Hessian, using central differences are
summarized below:

∂f(x)

∂xi
≈ f(x+ ϵei)− f(x− ϵei)

2ϵ
(2)

∂2f(x)

∂xi∂xj
≈ f(x+ ϵei + ϵej)− f(x− ϵei + ϵej)

4ϵ2
− f(x+ ϵei − ϵej) + f(x− ϵei − ϵej)

4ϵ2

where ei is the i−th unit vector and ϵ a small positive scalar. Finite differencing
is a perfect candidate for parallel execution. All function evaluations in Eq.(2),
f(x+ ϵei) and f(x+ ϵei + ϵej), can be performed independently and in parallel.

The Newton procedure locates a minimizer efficiently with quadratic conver-
gence speed. However, there is no guarantee that this minimizer will be the one
with the lowest function value in all S, as the minimizer may stick at a local
minimum. This requirement introduces the problem of global optimization, one
of the most difficult problems in applied mathematics. Searching for the global
minimum is a quite challenging, yet extremely useful task for all applications
mentioned in the beginning of this Section. It is proven, in the multidimensional
case, that it is impossible to guarantee the globally optimal value will be found in
finite time. All that can be assured is that the probability of locating the global
minimizer approximates 1. One of the oldest and most popular schemes for deal-
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Fig. 1. Execution task graph for Multistart using finite difference derivatives

ing with global optimization problems is the Multistart method. According to
this method, a local search procedure L is executed for each point in a sample
generated from a uniform distribution over the search space S. Albeit simple
in principle, Multistart is the heart of more sophisticated global optimization
algorithms such as clustering methods[1, 2].

3 Multistart parallelism issues

In the framework of global optimization based on numerical differentiation, there
exist several levels of parallelism that can be exploited in order to accelerate the
method. Fig. 1 illustrates the execution task graph of the Multistart method.
Each circle corresponds to code that spawns parallelism, which can be expressed
and instantiated with lower-level tasks. Tasks at the innermost level are repre-
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sented with squares and correspond to serial code and specifically to either single
function evaluations or sequential direct linear algebra operations. Therefore, the
paths of the graph represent operations that can be performed in parallel while
their meeting points represent the completion of all tasks in a team with the
satisfaction of all data and control dependencies.

Initially, the application runs the Multistart method and spawns first-level
(L1) tasks. These perform the Newton local search method to multiple indepen-
dent initial points (xi) and execute iterations until the convergence criterion is
met. In each iteration, the tasks first proceed with the derivative calculation,
spawning two second-level (L2) tasks that compute the gradient and Hessian re-
spectively. The gradient computation includes a number of function evaluation
(L3) tasks. The Hessian computation, however, exploits an additional level of
parallelism by assigning the numerical calculation of each partial derivative to a
(L3) task that can spawn two to nine function evaluation (L4) tasks, depending
on the desired accuracy and the bounds. Local search continues with a sequen-
tial task that performs the required matrix modification and the solution of the
linear system. The iterative line search method follows, exploiting each time a
single level of parallelism for the gradient computation. For a large number of
initial points, a gradual execution of Multistart can be performed by applying
the Newton method to bunches of points. In such case, the execution task graph
is repeated until the desired number of points has been processed.

Multistart is a highly irregular parallel application: first, the local search
method is applied concurrently to multiple points, the number of which may not
be exactly divided by the number of available processors. Secondly, the execution
time of local search exhibits significant variation as the number of iterations re-
quired for convergence depends on the randomly selected initial point. Similarly,
the line search method is performed for an unknown before number of iterations.
Irregularity is found even at the innermost level of parallelism (Hessian calcula-
tion), as the number of function evaluations for the derivative computation at a
specific point also depends on the imposed bounds on the variables. According
to the above, the execution times for finding a minimum for each initial point are
neither balanced nor known beforehand. Derivative estimation via finite differ-
encing is computationally expensive for several applications where the time for
a single function call is substantial. Therefore, the highly irregular nested paral-
lelism of Multistart must be exploited at all possible levels, without making any
assumption about the number of available processors.

4 TORC runtime library

torc [3] implements a task-based programming and runtime environment that
makes the development of master-worker applications almost trivial. Although
torc supports several features, due to lack of space we briefly present only those
related to the parallelization of the Multistart method.

torc assumes that a single application consists of multiple mpi processes
with private memory when running on the cluster. Furthermore, it uses multi-
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threading to exploit the multiprocessor/multicore cluster nodes. A task repre-
sents a work unit that is independent of its execution vehicle, i.e. the mpi process
or thread. A spawned task can be submitted for execution to any mpi process;
the programmer may specify the target process in the task creation routine.
When a parent task blocks, its underlying vehicle can proceed to the execu-
tion of other ready-to-run tasks. This means that a torc application can run
successfully even if only a single-threaded process is used. Furthermore, each
process can have multiple worker threads. Therefore, the same application code
can run on any combination of mpi processes and threads, exploiting at runtime
the presence of physically shared memory, if available.

Due to the decoupling of tasks and execution vehicles, multiple levels of task
parallelism are inherently supported and any child task can become a master
and spawn new tasks. Therefore, torc enables the programmer to express hier-
archical and recursive task parallelism naturally, which would be otherwise quite
difficult to implement. In the task creation routine (torc task()), the user spec-
ifies the task function, the number of arguments this function receives and an
argument list. For each argument, its size and data type is required. In addition,
an intent attribute must be also supplied, similarly to the IN, OUT and INOUT
intent attributes of Fortran 90. Any data movement is performed transparently
to the user. After task creation, a master task calls the torc waitall() routine
to suspend itself until all child tasks have finished and their results have arrived.
Several master-worker applications may have global data that is initialized by
the master and then broadcast to the workers. The torc bcast() routine allows
any task to broadcast global data to all mpi processes, thus avoiding unnecessary
data transfers.

As task stealing is inherently supported by torc, the programmer has only
to decide about the task distribution scheme, by querying the execution envi-
ronment and then specifying the node or worker where each task will be initially
submitted for execution. The scheduling loop of a worker thread is activated
when its current task finishes or blocks. A worker extracts and executes the task
that is at the front of its local ready queue. If this is empty, the worker tries to
steal a task from the rest of the intra-node ready queues. If inter-node task steal-
ing is enabled, it issues requests for work to remote nodes in sequential order.
Task stealing is always performed from the back of the ready queues. The steal-
ing of a task from a remote queue includes the corresponding data movement,
unless the task returns to its parent node. Inter-node task stealing is optional
and must be explicitly enabled based on the load imbalance of the parallel ap-
plication. On the other hand, intra-node task stealing is always active. A more
detailed description of the torc library can be found in [3].

5 PNDL and parallel Multistart implementation

The parallel implementation of the numerical differentiation library for multi-
core clusters has been based on the tasking model that torc provides. For each
function evaluation, a task is created, with main input argument a vector x and
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! first level
subroutine pndlhf(f, x, n, iord, hes)
external f, driver
integer n, iord
double precision x(n), hes(n,n), xx(n)
common /data/ xx
...
<set xx(I) = x(I)> ! create copy of x
call torc_bcast(xx, n, MPI_DOUBLE_PRECISION)
iworker = torc_worker_id()
nworkers = torc_num_workers()
<for each derivative>

call torc_task(iworker, driver, ..)
istride1 = <# function values required>
iworker = mod(iworker+istride1,nworkers)

call torc_waitall()
end

! second level
subroutine driver(f, n, ...)
double precision xx(n)
common /data/ xx(n)
...
iworker = torc_worker_id()
nworkers = torc_num_workers()
istride2 = 1
<for each required function value>

call torc_task(iworker, f, ..)
iworker = mod(iworker+istride2,nworkers)

call torc_waitall()
<compute partial derivative h(i,j)>
end

Fig. 2. Outline of a pndl Hessian calculation with exploitation of two levels of paral-
lelism using the STRIDE distribution scheme

result the computed function value f(x). The core routine that pndl implements
for Hessian computations is: pndlhf(f,x,n,iord,hes), where f is the function
to be differentiated, x the vector containing the point of calculation, n the di-
mensionality of the function, iord the requested order of accuracy, and hes the
resulting Hessian matrix.

The parallel routines that pndl exports to mpi programs have been re-
designed for a master-worker execution mode. The calling process initializes the
input parameters and receives the computed derivatives. When a pndl routine
is invoked, the primary task initially broadcasts the input vector x, through the
use of a common block. If the routine has a single level of parallelism, function
evaluation tasks are spawned and distributed cyclically to the workers. After
task completion, the primary task uses the gathered function values to compute
the derivatives. Although a reduction operation can be used, the adopted scheme
preserves the sequential order of calculations and, thus, avoids rounding errors.

The above scheme, however, may increase significantly the memory require-
ments of pndl for the estimation of second order derivatives of functions with
a large number of variables, which can be of the order of thousands for specific
problems. To handle this issue, we exploit nested parallelism; each element of
the Hessian is calculated by a first-level task, which issues function calls through
second-level tasks. The number of first-level tasks is equal to (n(n + 1)/2) and
each of them spawns 2 to 9 second-level tasks, according to user parameters.
Memory usage is drastically reduced because the number of active first-level
tasks, which reserve stack space for the results, never exceeds the number of
available workers. This is achieved because second-level tasks are inserted in the
front of the ready queues and thus have higher execution priority than first-level
tasks, which are inserted at the end.

The runtime architecture of torc allows for several task distribution schemes:
Fig. 2 outlines the hierarchical parallel implementation of the pndlhf routine
using the STRIDE scheme, which divides equally the number of function eval-
uations among the available workers. The first argument of the task creation
routine denotes the identifier of the worker thread where the task will be sub-
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mitted to. The parent task distributes the first-level tasks using a variable stride
(istride1) that is determined by the (known beforehand) number of second-
level tasks that correspond to each task. Next, each first-level task distributes
the inner tasks to consecutive workers (istride2=1), starting from the worker
where that task runs on. The STRIDE scheme is, however, suitable only for dedi-
cated homogeneous clusters and may result in an excessive number of messages
for high-dimensional functions. To overcome these issues we have introduced a
dynamic task distribution scheme, called glts, which distributes the first-level
tasks cyclically across the processors (istride1=1) and submits the second-level
tasks locally (istride2=0) with task stealing enabled. gl is another task dis-
tribution scheme that differs from glts in that task stealing is used only at the
intra-node level, i.e. between workers that belong to the same process. Finally,
llts is a variant of the glts scheme that submits even the first-level tasks locally
and specifically in the ready queue of the worker that issued the pndl routine
(both strides are equal to zero).

The parallelization of the Newton method relies on two pndl routines that
compute the required gradient and Hessian matrices. These routines can be exe-
cuted concurrently, as an additional level of parallelism, through the spawning of
two torc tasks. This, however, requires appropriate modifications in pndl, due
to the usage of the common block for broadcasting the input vector. Therefore,
we use an array of input vectors in the common block and each pndl function
call is dynamically assigned a unique identifier that specifies an available en-
try of this array. Parallel Multistart takes advantage of the reentrancy of pndl
functions to issue multiple local searches concurrently starting from randomly
chosen initial points. As the number of points increases, the small serial fraction
of the Newton method becomes negligible and the effective utilization of parallel
hardware is further improved. For Multistart, we have followed mlts, a modified
llts distribution scheme: tasks at the first-level of parallelism, i.e. Newton opti-
mizations, are distributed cyclically across the workers. Parallelism at all inner
levels is submitted locally, with inter-node task stealing enabled. Ideally, each
local search will be performed exclusively by a single worker. Idle workers will
try to steal and execute tasks that belong to the first-level of parallelism and
will participate in the execution of remotely issued pndl routines only when the
number of remaining optimizations is less than the number of workers.

6 Performance experiments

In this section we present experimental results from application executions on
a dedicated 16-node Sun Fire x4100 cluster with Gigabit Ethernet, each node
with 2 dual-core AMDOpteron 275 CPUs. The software setup includes Linux 2.6,
GCC 4.3 and mpich2. In all experiments we use the multithreaded configuration,
running a single process with multiple workers on each cluster node.

Our system targets mostly medium to coarse-grained tasks for remote ex-
ecution. As an indication, for the specific platform used for our experimental
evaluation, the task execution overhead is measured approximately 0.1ms for a

8



zero-argument task; this overhead however decreases with the number of tasks
due to the overlap of task creation, data movement and task execution. Thus,
the overhead for the single task case depends on the latency of the intercon-
nection network, while the overall minimum overhead depends on the maximum
bandwidth. In addition, the minimum overhead for a given number of tasks is
a linear function of the argument size. In contrast, within a multi-core node we
support very fine-grained tasks efficiently.

Parallel Hessian. We present two sets of synthetic experiments that calculate
the Hessian with O(h4) precision without imposing bounds on the variables.
The first set of experiments (E1, E2) uses a test function with 20 variables and
leads to a total of 820 objective function calls. We have arranged for function
evaluation time to be 100ms and 1000ms via appropriate artificial delays. The
second set (E3, E4) uses a 100-dimensional test function with artificial delays
of 10ms and 100ms. The number of function evaluations for this set is 20200.
Both experiments are designed to cover a wide range of practical situations
and correspond to medium and large problem sizes. They are representative of
applications with many dimensions and/or substantial function execution time.

Figs. 3-4 and 5-6 present the results from the two sets of experiments with
the 4 task distribution schemes (stride, glts, gl, and llts). For the first set,
we observe that the speedup increases with the computational cost of the test
function, due to the higher computation-to-communication ratio. The slight de-
crease in performance is attributed to several factors: a small serial fraction of
code in the pndl function, the overhead for broadcasting the point and the
load imbalance when the number of function evaluations is not exactly divided
by the number of workers. Although all distribution schemes exhibit compa-
rable performance up to 32 processors, glts achieves the highest speedup on
64 processors, with llts and gl to follow. The lowest speedup corresponds to
the stride scheme because of its large number of explicit messages. For the
100-dimensional function (Figs. 5 and 6), the obtained speedup of glts almost
coincides with the ideal for both cases. In this set of experiments, the lowest
speedup values are observed for llts, due to the bottleneck at the single queue
where the 5050 first-level tasks are submitted for execution.

Parallel Multistart. In order to evaluate parallel Multistart we use a test
function with 10 variables, artificial delays that range from 1ms to 1s, and the
modified llts task distribution scheme. Fig. 7 depicts the speedup for a single
starting point, which represents a worst-case but unlikely to occur scenario in
global optimization problems. We observe that the Newton method fails to scale
as the number of workers increases, regardless of the function evaluation time.
This is mostly attributed to the small sequential task (≃2%) of the Newton
method. The speedup can be further affected by the communication overheads,
especially when the computational cost of the objective function is low. For
function evaluation time equal to 1s, however, the measured speedup is very close
to the maximum theoretical speedup as defined by Amdahl’s law. Figs. 8 to 10
show the speedup of Multistart for 16, 64 and 1024 optimizations. The attained
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Fig. 3. Speedup for experiment E1 (vari-
ables=20, delay=100ms)

Fig. 4. Speedup for experiment E2 (vari-
ables=20, delay=1000ms)

Fig. 5. Speedup for experiment E3 (vari-
ables=100, delay=10ms)

Fig. 6. Speedup for experiment E4 (vari-
ables=100, delay=100ms)

speedup increases with the number of optimizations, especially if this exceeds
the number of available processing cores. For 1024 optimizations, the speedup
almost coincides with the ideal for both 10ms and 100ms evaluation time. The
performance results are in accordance with those obtained for a real application
case that deals with the protein folding problem [4].

7 Related work

Although many parallel local and global optimization algorithms were proposed
in the last decades (e.g. [5, 6], only a handful of actual systems exist. One of the
most widely used scientific software programs, MATLAB, presented its first par-
allel optimization solution in 2009 [7]. In the pioneer work of [8] an interval global
optimization method is implemented using dynamic load balancing. PGO [9] is a
general parallel computing based on the Genetic Algorithm. In PGO, the parallel
(and heterogeneous) computing framework is organized as a global master-slave
system using a central database management system for storing all the data dur-
ing optimization progress. Oriented in interoperability, the MHGrid platform [10]
exploits meta-heuristics based search methods and Grid computing to enable the
transparent sharing of heterogeneous and dynamic resources offering a versatile
Global optimization framework. MANGO [11] is a middleware that involves the

10



Fig. 7. Speedup for 1 local search Fig. 8. Speedup for 16 local searches

Fig. 9. Speedup for 64 local searches Fig. 10. Speedup for 1024 local searches

development of an extensible and flexible multiagent platform, in which au-
tonomous agents can solve global optimization problems in cooperation. Finally,
PaGMO[12] is a open source multi-threaded software that offers a plethora of lo-
cal and global optimization codes exploiting modern multi-core architectures. In
contrast to our infrastructure, none of the above supports hierarchical and multi-
level task parallelism. In addition, our system is platform-agnostic supporting
transparently both shared and distributed memory architectures.

Despite the availability of several software packages for estimating derivatives
numerically (e.g. [13, 14]) their implementation is sequential. The only parallel
numerical Hessian implementations we are aware of are [15] and [16], mainly
used for computational chemistry.

8 Conclusions

We presented a system for efficient exploitation of nested and irregular paral-
lelism in non-linear optimization problems. At the core of our system is torc,
a runtime library that supports adaptive task-based parallelism on clusters of
multicores/smps. Using torc, we manage to extract and execute the multiple
levels of parallelism inherent in the Multistart optimization method, performing
thus Newton-based local searches, gradient and Hessian calculations and func-
tion evaluations in parallel.

Our ongoing work includes the integration of additional numerical optimiza-
tion techniques into our infrastructure. We also work on the efficient paralleliza-
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tion of a real application case, concerning the protein folding problem. Finally,
we plan to extend the applicability of our system to computational grids and
gpgpu environments.
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