
Exploiting Fine-Grain Thread Parallelism on

Multicore Architectures

P. E. Hadjidoukas G. Ch. Philos

V. V. Dimakopoulos

Department of Computer Science

University of Ioannina

Ioannina, Greece, GR-45110

{phadjido,gfilos,dimako}@cs.uoi.gr

Abstract

In this work we present a runtime threading system which provides

an efficient substrate for fine-grain parallelism, suitable for deploy-

ment in multicore platforms. Its architecture encompasses a number

of optimizations that make it particularly effective in managing a large

number of threads and with low overheads. The runtime system has

been integrated into an OpenMP implementation to allow for transpar-

ent usage under a high level programming paradigm. We evaluate our

implementation on two multicore systems using synthetic microbench-

marks and a real-time face detection application.

1 Introduction

Multicore architectures (MCAs) have become ubiquitous, and systems based

on MCAs are these days a commodity, offering a very accessible means of



achieving increased application performance. While CPUs with 2-8 cores

have been already available in the last few years, the day when there will

exist tens or hundreds of cores on a single die does not seem to be very far

away [15].

Programming efficiently such systems is a necessity that in many cases

becomes a headache. The reason is that because MCAs are the mainstream

architecture, mainstream programmers (with years of sequential program-

ming experience) will be called to program them. These programmers will

be faced with problems and challenges that up to now were exclusive to

the high-performance computing (HPC) community. However, traditional

non-HPC programmers are more oriented towards productivity (and easi-

ness of development) than performance. As such, programming models and

supporting system software for MCAs have to be relatively easy to use and

at the same time able to produce significant performance figures.

MCAs can be viewed as full SMP systems on a chip. In fact, this is

the view most current operating systems have, hence not differentiating

between SMPs and MCAs. While the similarities are indeed many, there

are some subtle differences that are crucial for application performance. To

start with, the cores in MCAs have a deeper hierarchy of memory sharing

than the CPUs in an SMP. While the latter share only main memory, MCA

cores typically share both memory and L2 caches. This favors computational

locality and results in high core-to-core communication speeds. On the other

hand, L2 caches in MCAs are much smaller (they are expected to one or

two orders of magnitude smaller) than the L2 caches collectively be present

in a similarly sized SMP system. Sharing such small caches will easily lead

to cache conflicts in MCAs, and may have a negative impact on application

performance.

2



MCAs are becoming non-uniform memory access (NUMA) machines.

There is a significant difference when an access hits on a shared L2 cache and

when the access has to go all the way to main memory. The NUMA factor

will be even bigger as tens or hundreds of cores will have to be interconnected

by either an on-chip network or a very deep hierarchy of shared caches. SMPs

on the other hand are mostly considered UMA machines and are treated as

such by both the programmer and the runtime system.

MCAs will provide many cores; the Intel 80-core prototype is already

almost 2 years old [15]. In SMPs, the CPUs were typically limited to single-

digit numbers, reaching 16 or 32 in some high-end systems. While applica-

tions for a limited number of CPUs can be coarser, for MCAs they will have

to be finer in order to utilize efficiently the available computational power.

In conclusion, while MCAs are similar to SMPs, there exist enough and

important differences to justify reconsidering the design of all software levels,

from system software up to the application level.

In this paper we consider a runtime threading system capable of lever-

aging MCAs, producing high performance execution while hidden under

an easy-to-use programming model. In particular, we make the case that

OpenMP [18] is a very appropriate programming model for today’s and most

probably tommorow’s multicore systems. This stems from the fact that it

provides high-level abstractions and incremental program development with-

out altering the base programming language, making it thus accessible to

traditional non-HPC programmers. At the same time we have found that it

allows for advanced runtime systems to take full advantage of the underlying

processing hardware.

The rest of the paper is organized as follows. Section 2 presents the

design of our runtime system. In Section 3 we discuss the integration of our

3



runtime system into an OpenMP compiler so as to make its usage trans-

parent to the application programmer. Section 4 assesses the effectiveness

of our design; we present experimental results which include both synthetic

microbenchmarks and a full-fledged application. Section 5 discusses related

work and, finally, Section 6 concludes the paper.

2 The threading runtime system

We consider runtime libraries that will be called to harness the multiplicity of

processing cores through multiple threads. Threads is the natural choice for

parallel execution. Even in the case of new application-domain languages,

where the programmer is not directly exposed to threads, but uses a higher-

level abstraction, the underlying runtime system is based on threads (e.g.

Cilk [4]).

While threading systems always strived for performance, we have identi-

fied a number of characteristics that threading systems for MCA platforms

will be called to provide and handle efficiently:

• Load balancing is a prerequisite for high-performance execution. Al-

though, this will be a very serious issue when a larger number of cores

is available, it is also important today. For example, nested parallelism

may actually lead to increased execution times if the workload is not

balanced appropriately.

• A large number of threads. This is a necessity, not only because mul-

ticore CPUs will consist of many cores but also because, even with

a relatively small number of cores, a large number of low-overhead

threads may help towards balancing the load. A few coarse threads

4



on a few cores can easily lead to load imbalance and underutilization

of the system. Large numbers of fine-grain threads will be required,

along with an efficient management of their execution.

• Effective scheduling. Traditional SMP-style thread scheduling (e.g.

based on processor affinity) will not suffice. NUMA factors will have

to be taken into account, especially when a larger number of cores

becomes available. Some form of hierarchical scheduling seems ap-

propriate, so as to match the hierarchy in architecture and memory

sharing.

We have designed psthreads, a high-performance threads library ar-

chitected to meet the above requirements in a multicore environment. It

exports a posix threads-like interface and implements a two-level thread

model, where non-preemptive user-level threads are executed on top of

kernel-level threads that act as virtual processors.

2.1 Core design

Although user-level multithreading has traditionally implied machine de-

pendence, the psthreads library is completely portable because its imple-

mentation is based entirely on the posix standard. Its virtual processors are

mapped to posix threads, while the primary user-level thread operations,

i.e. creation and context-switching, are provided by uthlib (Underlying

Threads Library), a platform-independent thread package. These opera-

tions are based on the management routines of the jmpbuf or ucontext t

structures, although they can also be emulated using exclusively posix

threads. uthlib utilizes a queue-based recycling mechanism for the un-

derlying threads. The routines required for multiprocessor synchronization

5



Figure 1: General design of the psthreads library

and queue management are implemented in a separate module. Locks are

internally mapped to posix mutexes or spinlocks, taking into account the

non-preemptive threads of the library. The routines and the exported appli-

cation programming interface of uthlib are both utilized by the psthreads

runtime library, which actually implements the two-level thread model (Fig-

ure 1).

Two important features of psthreads are (a) the utilization of different

data structures for the psthread descriptor and the underlying thread (i.e.

stack) and (b) the adoption of a lazy stack allocation policy. Thus, the

stack of a psthread is allocated right before the first context-switch to it,

which means that a psthread binds an underlying thread at that time.

This results in minimal memory consumption and actual thread migrations

between processors. Specifically, a large number of threads can be spawned

without having to allocate an equal number of stacks. Thus, better load

balancing can be achieved, with low runtime overheads due to the user-

6



level operations. Moreover, stack size can be fixed and large enough, which

simplifies and accelerates stack management.

Each virtual processor runs a dispatch loop, selecting the next-to-run

user-level thread from a set of ready queues, where threads are submitted for

execution. There are local (per virtual processor) queues and one optional

global queue that can be used for coarse-grain tasks. A second set of queues

is also available for the recycling of thread descriptors. The thread creation

routine of psthreads, which always tries to reuse a descriptor, does not

imply insertion of the thread to a ready queue. Instead, an additional routine

allows the user to specify the queue where the thread will be submitted

for execution and whether it will be inserted in the front or at the back

of the specified queue. Moreover, a parent thread does not have to join

explicitly each child thread: a wait routine suspends the execution of the

current thread until all its child threads have finished. Whenever a thread

is blocked, the library scheduler is invoked and another thread with its own

stack can be dispatched for execution on the same virtual processor.

Load balancing is achieved through work stealing [5], according to which

an idle virtual processor first checks its local ready queue and then tries

to steal work from the queues of the other virtual processors. The queue

architecture allows the runtime library to represent the layout of physical

processors. For instance, a hierarchy can be defined in order to map the

coupling of processing elements in current multicore architectures.

2.2 Scheduling

When many threads are spawned or nested parallelism is exploited, kernel

level thread models oversubscribe the system processors and time-sharing in-

7



creases significantly runtime overheads. In addition, scheduling threads that

map to inner levels of parallelism becomes difficult with respect to their bind-

ing to specific processors in order to favor computation and data locality.

Limiting the number of created threads avoids the excessive runtime over-

heads but can easily cause load imbalance. The utilization of non-preemptive

user-level threads allows the runtime library to manage parallelism explic-

itly, which is not possible for the case of kernel threads.

In the psthreads library, an idle virtual processor extracts threads

from the front of its local ready queue but steals from the back of remote

queues. This provides support to an adaptive work distribution scheme for

the management of general unstructured nested parallelism. In particular,

threads that are spawned at the first level of parallelism are distributed

cyclically and inserted at the back of the ready queues. For inner levels,

the threads are inserted in the front of the ready queue that belongs to the

virtual processor they were created on. This scheme favors the execution of

inner threads on a single processor and improves data locality.

The work stealing mechanism has been designed to work hierarchically,

assuming the existence of thread groups. Specifically, the virtual processors

are organized as a hierarchy of groups, which can be arbitrary. Thus, an

idle virtual processor first examines the ready queues of its adjacent virtual

processors in the lowest level group it belongs to; if no work is found, it

tests the queues of the remaining processors in the group one level higher

and so on. Due to our two-level thread model, there is a 1:1 mapping

between virtual and physical processors and, thus, the queue hierarchy of

the runtime library can be mapped directly to the hardware architecture. In

our runtime system, we do not introduce any additional ready queues. This

simplifies the implementation and avoids the overhead of moving threads

8



across queues of different levels. Having a single queue for each higher

level group can result in hot spot contention, if all processors try to access

that queue. Due to our hierarchical visiting order, however, the accesses to

the ready queues is performed more evenly between virtual processors. An

outline of our hierarchical work stealing mechanism, with the assumption

that groups of the same level have equal size, is presented in Figure 2. The

group size at each level can be arbitrary. In particular, they can be defined

by the user or discovered during psthreads initialization to match the

hierarchical organization of the system cores. Figure 3 shows an example of

the work stealing algorithm and the hierarchical visiting order of the queues

for a specific virtual processor.

The Cilk runtime system [4] also maintains a local ready queue for each

processor (so does the Intel Threading Building Blocks, TBB, library [20]).

The ready queue is an array of lists, with each list corresponding to a specific

level of parallelism. An idle processor selects randomly a ready queue and, if

this is nonempty, extracts the thread from the tail of the list that corresponds

to the outermost level of parallelism. Due to random stealing, however, these

systems do not take into account any hierarchy among the processing cores.

Other approaches (e.g. [17]) utilize an hierarchical queue scheme: the ready

queues are organized as a tree, having a central queue at the root and local

ready queues all the way down to the leaves. A processor has access only

to the queues that reside on the path between its own local ready queue

and the highest-level central queue. The drawback of this scheme is that it

defines a fixed partitioning of the system processors and can lead to load

imbalance.

9



GroupSize[0..NLevels-1]: # VPs in each group at a given level

/* private data */

MyID: current virtual processor

visited[0..N-1]: flags initialized to zero at every call

visited[MyID] = 1; /* local queue was empty */

thread = NULL;

Level = 0;

while (Level < NLevels) {

nvisits = 0;

VPGroupSize = GroupSize[Level];

VPGroupID = MyID / VPGroupSize;

VPGroupBase = VPGroupID*VPGroupSize;

if (Level == 0)

vp = MyID;

else

vp = (MyID + GroupSize[Level-1]) % VPGroupSize + VPGroupBase;

while ((thread == NULL) && (nvisits < VPGroupSize)) {

if (!visited[vp]) {

visited[vp] = 1;

thread = DequeueWork(vp);

}

vp = (vp + 1) % VPGroupSize + VPGroupBase;

nvisits++;

}

if (thread != NULL) break;

Level++;

}

/* execute thread */

Figure 2: Outline of the hierarchical thread scheduling algorithm

10



Figure 3: An example of the work stealing algorithm and the visiting order

of the remote queues for virtual processor #4. The group sizes at levels 0,

1 and 2 are 3, 6 and 12 respectively.

2.3 Enhancements for fine-grain parallelism

The efficient support of a large number of threads has motivated further im-

provements in the library, related to memory recycling and thread barriers.

Both psthreads and uthlib employ a queue-based recycling mecha-

nism for the psthread descriptors and the underlying stacks respectively.

As a central queue approach provides load balancing but suffers from high

contention, recycling is performed through local queues. The thread creation

routine always tries to recycle a thread from the local queue and finished

threads are inserted locally too. To deliver the best performance, however,

parallel programs that spawn many threads must rely on the local recycling

without requiring access to the other queues. uthlib achieves this goal due

to the lazy stack allocation policy: in the case of single-level parallelism, one

underlying stack per virtual processor is adequate for any arbitrary number

of threads. Moreover, each level of parallelism introduces at most one stack

11



on each virtual processor. A minor improvement of this mechanism, which

avoids the access to the local recycling queue (although it is contention-free),

is the support for stack handoff. Specifically, a finished thread does not re-

cycle its stack but instead (a) replaces its descriptor with the subsequent

thread’s descriptor, (b) re-initializes its own execution state and (c) resumes

execution.

In contrast to underlying threads, local recycling does not imply opti-

mal memory management of thread descriptors. Due to work stealing in

psthreads, threads can run and finish on any virtual processor. Therefore,

local recycling queues will have available descriptors that can be consumed

during thread creation. If, however, spawning of parallelism is mostly per-

formed on the same virtual processor, there will be one producer and many

consumers for the thread descriptors. To overcome this issue we imple-

mented a direct-reuse mechanism for the descriptors. Specifically, we have

introduced a variant of the thread creation routine (psthread create ex)

that can accept a previously allocated descriptor. If the pointer to the de-

scriptor is not set (i.e. has the value NULL) then the recycling mechanism

is activated, otherwise the memory of the provided descriptor is used. When

such a thread finishes, the library does not recycle the memory of the corre-

sponding descriptor. It is the user’s responsibility to save the pointer to the

descriptor, in order to reuse it later in a subsequent thread creation call.

Figure 4 shows an example of thread creation using the direct memory

reuse method. Initially, a number of threads (N) are created and submitted

for execution in the queue of virtual processor 0. As the thread descriptors

have not been set, the pthread create ex involves memory allocation for

each descriptor. In the second loop, however, the creation routine takes as

input the previously allocated descriptors and hence does not activate the

12



int i;

psthread_t t[N];

psthread_attr_t attr = PSTHREAD_ATTR_DEFAULT;

/* 1st round - thread descriptors are allocated */

for (i = 0; i < N; i++) {

t[i] = NULL;

psthread_create_ex(&t[i], &attr, func, arg);

psthread_enqueue(t[i], 0);

}

psthread_waitall(); /* wait all child threads */

/* 2nd round - thread descriptors are provided */

for (i = 0; i < N; i++) {

psthread_create_ex(&t[i], &attr, func, arg);

psthread_enqueue(t[i], 0);

}

psthread_waitall();

Figure 4: An example of using psthreads with the variant of the thread

creation routine. Thread descriptors are allocated only during the first loop.

recycling mechanism.

The psthreads library also implements barriers between its user-level

threads, exporting a set of routines similar to that of posix threads. The

barrier initialization function takes as argument the number of the threads

that will call the barrier, while the wait function suspends the calling thread

until the specified number of threads reach the barrier. An efficient spin-

ning barrier implementation cannot be used because we cannot make any

assumption about the number of participating threads (i.e. there may be

13



more than the number of processors). In a simple implementation, similar

to that presented in [7], each psthread that reaches a barrier is inserted in

the private queue of that barrier and releases the underlying virtual proces-

sor. The last thread extracts and reinserts each blocked thread in the ready

queue of the virtual processor that was previously executing it. To avoid

contention at the barrier queue, we have introduced an optimization to our

barrier implementation. Specifically, the barrier initialization routine, does

not use a single queue but allocates an array of pointers to thread descrip-

tors. The size of the array is equal to the number of threads that will join

the barrier. The barrier wait routine is also extended to include as second

argument the id of the thread, which must be provided by the programmer

or the software that utilizes psthreads (e.g. OpenMP runtime library).

Whenever a thread reaches a barrier, it registers itself in the array, at the

position that is determined by its id. The last thread accesses the array and

reinserts every descriptor in the appropriate ready queue.

3 A runtime system for OpenMP

OpenMP [18] has become a standard paradigm for shared memory program-

ming, as it offers the advantage of simple and incremental parallel program

development, in a high abstraction level. One of the reasons that OpenMP

has been so successful is that it does not change the base language; appli-

cation programmers continue to use C/C++ or Fortran, augmented with

directives that take effect only if an OpenMP compiler is used. In addition,

the programmer does not have to deal with threading details, as these are

taken care of by an accompanying runtime library. As a result, OpenMP is

a programming model quite accessible to non-HPC programmers.

14



OpenMP was designed with SMP architectures in mind and as such it

fits the MCA model quite nicely, albeit it may not always deliver top per-

formance as almost all implementations seem to have scalability problems

when the number of threads increases significantly. For example, it has

been demonstrated [11] that under fine-grain nested parallelism, where a

large number of threads have to be managed, almost no implementation has

a graceful behavior. However, this does not mean OpenMP is unsuitable for

fine-grain parallelism. We show here that a high-performance runtime sup-

port library for OpenMP may allow applications to reach high performance

levels. OpenMP is probably not ready for the many-core era as it does not

currently allow for NUMA exploitation. However, there have been quite a

few proposals in the open literature for NUMA extensions and it is certainly

going to be one the key concepts for the next versions of OpenMP [3, 8].

We have integrated psthreads into ompi [19], a source-to-source com-

piler for OpenMP/C V2.5. ompi takes as input C source code with OpenMP

directives and outputs transformed but equivalent C code augmented with

calls to ompi’s runtime system. The resulting program is compiled by the

system’s native C compiler and linked with the runtime library producing

the final executable.

The runtime system of ompi has been designed with modularity in mind

and makes it particularly simple to modify its threading primitives or in-

corporate new ones. ompi, through its compilation process maps OpenMP

threads to abstract execution entities (EEs). The runtime system of ompi

provides the EEs that will carry out the work of OpenMP threads and con-

trols their operation and synchronization. It has been architected with an

internal interface that facilitates the integration of arbitrary EEs. It con-

sists of two modules; the first module (ort) groups EEs, coordinates them

15



and schedules their execution within worksharing regions, but it does not

implement them. The second module (eelib) is the one that actually imple-

ments the execution entities. A number of eelibs that provide thread EEs

are available for ompi, including libraries that are based on posix threads

and Solaris threads. Finally, there is one more library that provides heavy-

weight processes as EEs and interfaces with arbitrary software DSM cores,

providing transparent execution on clusters [19].

We have implemented a custom eelib to interface with psthreads. The

eelib that integrates psthreads into ompi is relatively straightforward be-

cause spawning of threads is performed explicitly, while thread pooling is

provided by the thread library. OpenMP thread self-identification is based

on thread local storage that psthreads supports, and OpenMP barriers

are directly mapped to psthreads barriers. Upon application startup, the

value of the OMP NUM THREADS environment variable determines the num-

ber of virtual processors. If this variable has not been set or its value ex-

ceeds the system’s processor count, the number of virtual processors is set

equal to the number of physical processors. Thus, ompi maps the OpenMP

threads to lightweight psthreads and the number of kernel-level threads

never exceeds the number of physical processors. This approach minimizes

the OpenMP runtime overheads, especially when nested parallelism is en-

abled, and manages to exploit fine-grain parallelism. In addition, the inter-

nal thread scheduling scheme of the psthreads library favors the execution

of inner-level OpenMP threads on a single processor and improves data lo-

cality.

16



4 Experiments

4.1 Methodology

The integration of the psthreads library into an OpenMP environment

allows us to evaluate the efficiency of its threading primitives using standard

microbenchmarks that have been proposed for OpenMP instead of designing

our custom ones. Moreover, using various OpenMP implementations we

have a straightforward comparison between different threading approaches.

For this purpose, we use the EPCC microbenchmark suite [6], which

measures the overhead of the OpenMP constructs, including the costs for

creating parallelism (threads), locking and barriers. However, this suite is

only applicable to single-level parallelism; running the benchmarks with a

large number of threads can give an overhead estimation that is not ac-

curate. Evaluating nested parallelism based on application speedups [25, 1]

gives overall performance indications but does not reveal potential construct-

specific problems. To study how efficiently OpenMP implementations sup-

port nested parallelism and exploit fine-grain parallelism, we have extended

both the synchronization and the scheduling microbenchmarks of the EPCC

suite [11].

The technique followed in the EPCC microbechmark suite for measuring

the overhead of OpenMP directives, is to compare the time taken for a sec-

tion of code executed sequentially with the time taken for the same code ex-

ecuted in parallel, enclosed in a given directive. According to our approach,

the core benchmark routine for a given construct is represented by a “task”

(not to be confused with the task directive introduced in OpenMP 3.0). Each

“task” has a unique identifier and utilizes its own memory space for storing

its table of runtime measurements. We create a team of threads, where each

17



member of the team executes its own “task”. When all “tasks” finish, we

compute the global mean of all measured runtime overheads. The method is

outlined in Fig. 5. The team of threads that execute the “tasks” expresses

the outer level of parallelism, while each benchmark routine (“task”) con-

tains the inner level of parallelism.

In Fig. 5, if the loop (lines 4–6) is not parallelized, the “tasks” are ex-

ecuted in sequential order. This is equivalent to the original version of the

microbenchmarks, having each core benchmark repeated more than once.

On the other hand, if nested parallelism is enabled, the loop is parallelized

(lines 1–3) and the “tasks” are executed in parallel. The number of simul-

taneously active “tasks” is bound by the number of OpenMP threads that

constitute the team of the first level of parallelism. To ensure that each

member of the team executes exactly one “task”, a static schedule with

chunksize of 1 was chosen at line 2. In addition, to guarantee that the

OpenMP runtime library does not assign fewer threads to inner levels than

in the outer one, dynamic adjustment of threads is disabled through a call

to omp set dynamic(0).

In OpenMP implementations that provide full nested parallelism sup-

port, inner levels spawn more threads than the number of physical proces-

sors, which are mostly kernel-level threads. Thus, measurements exhibit

higher variations than in the case of single-level parallelism. In addition,

due to the presence of more than one team parents, the overhead of the

parallel directive increases in most implementations, possibly causing over-

estimation of other measured overheads. To resolve these issues, we increase

the number of internal repetitions for each microbenchmark, so as to be able

to reach the same confidence levels (95%).

18



void nested_benchmark(char *name, func_t originalfunc) {

int task_id;

double t0, t1;

1 #ifdef NESTED_PARALLELISM

2 #pragma omp parallel for schedule(static,1)

3 #endif

4 for (task_id = 0; task_id < p; task_id++) {

5 (*originalfunc)(task_id);

6 }

<compute global statistics>

<print construct name and statistics>

}

main() {

<compute reference time>

omp_set_num_threads(omp_get_num_procs());

omp_set_dynamic(0);

nested_benchmark("PARALLEL", testpr);

nested_benchmark("FOR", testfor);

...

}

Figure 5: Extended microbenchmarks for nested parallelism overhead mea-

surements

19



4.2 Microbenchmark results

We conducted our experiments on a server with 4 dual-core Intel Xeon

Paxville 3.0GHz CPUs running Linux 2.6. We provide results for two free

commercial and two freeware OpenMP C compilers that support nested par-

allelism. The commercial compilers are the Intel C++ 10.0 compiler (icc)

and Sun Studio 12 (suncc) for Linux. The freeware ones are GNU gcc 4.2

and ompi 1.0.0. We have used the default settings of the OpenMP runtime

libraries and the -O3 optimization flag in all experiments.

Our first experiment demonstrates our lightweight runtime support as

the number of OpenMP threads increases. Figure 6 presents the overheads

of the parallel (thread creation) and barrier OpenMP constructs, in-

creasing the number of threads from 8 up to 64 on a dedicated machine

and having a single-level of parallelism. We observe that gcc, suncc, and

ompi with posix threads (ompi) exhibit significant overheads while both

icc and ompi+psthreads achieve good performance for up to 32 OpenMP

threads. For more threads, however, the Intel compiler fails to maintain

stability and only the overheads of the ompi+psthreads compiler increase

linearly with the number of threads (i.e. proportionally to the number of

user-level context switches). This is attributed to the lower contention of

user-level threads on the processing cores.

In the second experiment we focus on the evaluation of OpenMP runtime

support for nested parallelism, using the extended EPCC microbenchmarks.

A selection of the obtained results is given in Figures 7–8, for the synchro-

nization and scheduling microbenchmarks. Each plot includes the single-

level overheads of each system for reference. We have chosen a logarithmic

scale for the y-axis for clarity. Both the OMP_NUM_THREADS environment vari-

20



able and the number of “tasks” are equal to the number of processing cores

in the system (8).

Fig. 7 includes the overheads for the parallel and barrier constructs.

As the number of active threads increases when nested parallelism is enabled,

the overheads are expected to increase accordingly. We observe, however,

that the parallel construct does not scale well for the gcc, Intel and ompi

compilers. For both of them, the runtime overhead is more than an order

of magnitude higher in the case of nested parallelism. For icc this could be

attributed, in part, to the fact that threads join a unique central pool before

getting grouped to teams [27]. On the other hand, both ompi+psthreads

and suncc clearly scale better and their overheads increase linearly, with

suncc, however, exhibiting higher overheads than ompi for both single level

and nested parallelism.

While icc exhibits similar behavior for the barrier construct, both

gcc and ompi show significant but not excessive increase. The Sun com-

piler seems to handle inter-team barriers quite well showing a decrease in

the actual overheads. ompi+psthreads manages to deliver the best per-

formance, showing the advantage of user-level threading: inner levels are

executed by lightweight threads, which mostly live in the processor where

the parent thread is, eliminating most intra-team contention and the asso-

ciated overheads.

Fig. 8 includes representative results from the scheduling microbench-

marks and specifically for static and guided schedules with a chunksize of 1.

As before, we observe that the overhead of both scheduling policies increases

substantially for the Intel compiler and considerably for gcc and ompi. In

contrast, the overheads of the guided scheduling policy actually decrease for

both suncc and ompi+psthreads. For the Sun Studio compiler, this is

21



Figure 6: Single-level runtime overheads for large number of threads

22



Figure 7: Overheads for parallel and barrier when one or two levels of

parallelism are exploited

23



attributed to the appropriate use of atomic primitives and processor yield-

ing, which can significantly reduce thread contention during the dynamic

assignment of loop iterations. ompi with user-level threading achieves the

same goal because it is able to assign each independent loop to a team of

non-preemptive user-level OpenMP threads that mainly run on the same

virtual processor.

4.3 A fine-grain application

In this section, we evaluate our runtime system using a fine-grain paral-

lel face detection application. The system is based on a special highly-

structured neural network topology and provides the best so far, in terms of

accuracy, face detection. The face detection system utilizes a fast pipeline

method that is highly parallelizable due to its simplicity. Details can be

found in [14].

As shown in [14], when processing a single image the performance of the

face detection system does not scale linearly as the processor count increases.

This is attributed to the inherent load imbalance, as the algorithm includes

a small number of parallel iterations and the computational load cannot

be distributed evenly to the system processors/cores. The exploitation of

nested parallelism can provide an effective solution to the above and thus

ameliorate the performance of the face detection system because additional

fine-grain parallelism, in terms of inner parallel loops, is extracted from the

application. The inner loops belong to the second level of parallelism, which

is executed by new teams of OpenMP threads. Lightweight runtime support

is crucial for better performance of the face detection system, considering

the requirement for real-time processing of a single image.

24



Figure 8: Overheads of static and guided loop scheduling when one or two

levels of parallelism are exploited

25



Table 1: Nested parallelization overheads on the quad-core system (µs)

OpenMP compiler parallel for

gcc 4.2 553.24 21.39

suncc 38.63 14.86

icc 60.81 8.35

ompi (psthreads) 3.51 3.65

All our experiments we conducted on a server equipped with an Intel

Xeon Quad-core X5355 processor (2.66GHz, 4MB L2 cache) and 2GB of

main memory. The operating system was Debian Linux 2.6.

Table 1 presents a sample of the runtime overheads for the parallel

and for OpenMP constructs under nested parallelism, measured using the

microbenchmarks described in Section 4.1. In this experiment, both the

number of “tasks” and OpenMP threads are equal to 4, resulting in 16

OpenMP threads that compete for computational resources. Comparing

with the results on the eight cores, the performance of icc is significantly

improved on the quad-core system, mainly because this experiment gener-

ates less contention per processor. We also observe that ompi continues to

exhibit the lowest runtime overheads of all OpenMP implementations.

Figure 9 depicts the speedups of the parallel face detection system for

a standard single-face test image (355×237 pixels wide), exploiting either a

single or two levels of parallelism. For the case of single level parallelism,

we observe that all configurations have similar performance and manage

to improve the face detection responsiveness. OpenMP parallelization is

the key factor that provides real-time performance (i.e. ≥25 images/sec)

to the face detection system. We observe that the scalability of the face

detection system is higher when nested parallelism is exploited using the

26



ompi compiler and 4 OpenMP threads. In this case, ompi+psthreads

attains the maximum speedup (3.66x), which is significantly improved, by

up to 23%, compared to the corresponding 2.97x speedup for the single-level

parallelism case, increasing thus the image processing rate.

When two OpenMP threads are used (T=2) for each parallel region,

the three OpenMP compilers exhibit speedups that are better than that

of ompi and higher than the corresponding number of threads. This is

reasonable because these configurations utilize 4 (2×2) total kernel threads,

which run on all system processing cores. On the other hand, ompi utilizes

only two kernel threads. Using 3 OpenMP threads (T=3), we observe that

all the compilers exhibit similar performance, with slightly higher speedup

for the Intel compiler. psthreads, however, uses one less processor than

the others, which means that the overheads of the other OpenMP systems

are significantly higher. As the number of OpenMP threads increases, more

fine grain parallelism is exploited. Thus, the contention of the OpenMP

kernel-level threads, which become more than the processing elements, is

also increased.

5 Related work

Hybrid thread models provide a combination of parallelism and low over-

head, having the advantages of both user-level and kernel-level models.

With the exception of few Unix vendors (HP-UX and IBM/AIX), most

posix threads libraries nowadays follow the kernel-level model, in which user

threads are associated one-to-one to kernel entities. NGPT (Next Genera-

tion POSIX Threads) was a hybrid model implementation of posix threads

for Linux, which has abandoned in favor of NPTL (Native POSIX Threads

27



Figure 9: Speedups of face detection, exploiting a single level and two levels

of parallelism. T is the value of the OMP NUM THREADS environment

variable, and represents the number of threads at each nesting level.

28



Library) [12]. If posix thread libraries followed a hybrid implementation,

however, the runtime overheads would be reduced, allowing the creation of

several threads without additional performance cost, as shown in [21].

Only few runtime systems implement an efficient and portable two-level

threads model for multiprocessor and multicore systems. Some of them

have been used to provide runtime support to an OpenMP compiler. Stack-

Threads/MP is a fine-grain thread library that provided efficient but not

portable support for dynamic nested parallelism as runtime module of an

experimental version of the Omni OpenMP compiler [25]. Marcel [26] is a

portable thread library that features a two-level thread scheduler, provides

a POSIX-compliant interface and runtime support to a modified version of

the GNU OpenMP compiler. We have experimented with integrating Mar-

cel into ompi [13]. We observed slightly higher overheads than psthreads,

mainly due to its more complex implementation and preemptive thread

scheduling.

McRT (Many-Core RunTime) [22] is a runtime environment for tera-

scale chip multiprocessors that supports fine-grain parallelism, concurrency

abstractions for easier parallel programming and supports platform and ap-

plication heterogeneity. McRT includes an OpenMP adaptor that translates

the API used by the Intel C compiler to the core McRT API.

NthLib is an efficient user-level threads library that provides runtime

support to the NANOS OpenMP compiler [2]. Nested parallelization is

based on the concept of thread groups, which are determined through ap-

propriate OpenMP extensions. A group of threads is composed of a subset

of the total number of available threads, while the rest threads support

the execution of nested parallel constructs. Therefore, the total number of

threads never exceeds that of available processors and, hence, the runtime

29



overheads of nested parallelism are equal to those of single level. This ap-

proach, however, can lead to load imbalance because it does not fully exploit

fine-grain parallelism and some processors may remain idle.

Tiny threads (TNT) [10] is a thread model for the Cyclops64 archi-

tecture and has been proposed as the first component of a Thread Virtual

Machine targeted to cellular architectures. TNT is part of a microkernel

for the C64 that runs directly on top of the C64 architecture aimed to high

efficiency at the expense of portability. A dispatched thread will run until

completion, without releasing the underlying hardware thread even if it is

sleeping. The integration of TNT into the Omni runtime library [23] pro-

vides an OpenMP infrastructure for the C64, without considering multiple

levels of parallelism though [9].

Besides OpenMP, thread libraries have provided runtime support to

other parallel programming approaches too. Intel Threading Building Blocks

[20] is a C++ library for multi core processors that does not require a special

runtime or compiler. The library maps user tasks into threads which can be

run in parallel and relieves the programmer from the overhead of manually

optimized thread design when conventional threads are used. Factory [24] is

a similar object-oriented parallel programming substrate which allows pro-

grammers to express multigrain parallelism without having to manage it.

Cilk [4] is a parallel programming language that does not use explicit

threading but Cilk frames, which are generated by its cilk2c compiler. The

Cilk runtime system maintains a local ready queue for each processor and de-

ploys an efficient work-stealing scheduler. The EARTH programming model

[16] follows a two-level hierarchy formed by threaded functions and fibers.

Fibers are lightweight threads that are scheduled using a dataflow approach

and executed in a non-preemptive manner. Hence, a fiber is never inter-

30



rupted and must never block.

The above runtime libraries do not support global barriers between their

work units. Whenever a work unit is blocked, the execution vehicle invokes

the runtime scheduler and runs the selected work unit on the same stack.

Therefore, these runtime libraries can not be used in an OpenMP implemen-

tation. On the contrary, psthreads is a runtime framework that provides

a lightweight implementation of nested OpenMP parallelism.

6 Conclusion

We presented the runtime architecture of psthreads, a high-performance

user-level threads library for efficient exploitation of fine-grain parallelism

on multicore architectures. The library has been integrated into the runtime

library of the ompi OpenMP compiler, resulting in lightweight nested paral-

lelism support. We have developed a methodology for measuring OpenMP

construct overheads under nested parallelism. Using the developed mi-

crobenchmarks we evaluate the runtime overheads and demonstrate the

advantages of user-level multithreading compared to the traditional kernel

thread based approaches.

psthreads allow for effective exploitation of fine grain parallelism with

large numbers of threads, through hierarchical scheduling and work stealing

techniques. Our current research targets support for heterogeneous cores

and NUMA-aware thread scheduling.

References

[1] D. an Mey, S. Sarholz, and C. Terboven. Nested Parallelization with OpenMP.

International Journal of Parallel Programming, 35(5):459–476, October 2007.

31



[2] E. Ayguade, M. Gonzalez, X. Martorell, J. Labarta, N. Navarro, and J. Oliver.

NanosCompiler: Supporting Flexible Multilevel Parallelism in OpenMP. Con-

currency: Practice and Experience, 12(12):1205–1218, October 2000.

[3] J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. Harris, C. A. Nelson, and

C. D. Offner. Extending OpenMP for NUMA Machines. In Proc. of the 2000

ACM/IEEE conference on Supercomputing, 2000.

[4] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, and

Y. Zhou. Cilk: An Efficient Multithreaded Runtime System. Journal of Parallel

and Distributed Computing, 37(1):55–69, 1996.

[5] Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded Com-

putations by Work Stealing. In Proc. of the 35th Annual Symposium on Foun-

dations of Computer Science (FOCS), pages 356–368, 1994.

[6] J. M. Bull. Measuring Synchronization and Scheduling Overheads in OpenMP.

In Proc. of the 1st European Workshop on OpenMP (EWOMP ’99), Lund,

Sweden, September 1999.

[7] David R. Butenhof. Programming with POSIX Threads. Addison Wesley, 1997.

[8] B. Chapman, F. Bregier, A. Patil, and A. Prabhakar. Achieving Performance

Under OpenMP on ccNUMA and Software Distributed Shared Memory Sys-

tems. Concurrency and Computation: Practice and Experience, 14(8–9):713–

739, 2002.

[9] J. Del Cuvillo, W. Zhu, and G. Gao. Landing OpenMP on Cyclops-64: An

Efficient Mapping of OpenMP to a Many-Core System-on-a-Chip. In Proc. of

the 3rd Conference on Computing Frontiers, pages 41–50, 2006.

[10] J. del Cuvillo, W. Zhu, Z. Hu, and G.R. Gao. TiNy Threads: a Thread Virtual

Machine for the Cyclops64 Cellular Architecture. In Proc. of the 5th Workshop

on Massively Parallel Processing (WMPP ’05), Denver, Colorado, April 2005.

32



[11] V. V. Dimakopoulos, P. E. Hadjidoukas, and G. Ch. Philos. A Microbenchmark

Study of OpenMP Overheads Under Nested Parallelism. In Proc. of the Int’l

Workshop on OpenMP (IWOMP ’08), West Lafayette, USA, May 2008.

[12] U. Drepper and I. Molnar. The Native POSIX Thread Library for Linux. In

Technical Report, Red Hat, Inc., January 2003.

[13] P. E. Hadjidoukas and V. V. Dimakopoulos. Nested Parallelism in the OMPi

OpenMP C Compiler. In Proc. of the European Conference on Parallel Com-

puting (EUROPAR ’07), Rennes, France, August 2007.

[14] P. E. Hadjidoukas, V. V. Dimakopoulos, M. Delakis, and C. Garcia. A High-

Performance Face Detection System. Concurrency and Computation: Practice

and Experience, to appear.

[15] T. G. Mattson, R. Van der Wijngaart, and M. Frumkin. Programming the intel

80-core network-on-a-chip terascale processor. In Proc. of the 2008 ACM/IEEE

conference on Supercomputing (SC ’08), pages 1–11, Piscataway, NJ, USA,

2008. IEEE Press.

[16] C. J. Morrone, G. Tremblay J. N. Amaral, and G. R. Gao. A Multi-Threaded

Runtime System for a Multi-Processor/Multi-Node Cluster. In Proc. of the

15th Annual Int’l Symposium on High Performance Computing Systems and

Applications, June 2001.

[17] D. S. Nikolopoulos, E. D. Polychronopoulos, and T. S. Papatheodorou. Effi-

cient Runtime Thread Management for the Nanothreads Programming Model.

In Proc. of the 2nd IEEE IPPS/SPDP Workshop on Runtime Systems for

Parallel Programming, volume 1388, pages 183–194, Orlando, FL, USA, April

1998.

[18] OpenMP Architecture Review Board. OpenMP C and C++ Application Pro-

gram Interface, Version 2.5. May 2005.

[19] G. C. Philos, V. V. Dimakopoulos, and P. E. Hadjidoukas. A Runtime Architec-

ture for Ubiquitous Support of OpenMP. In Proc. of the 7th Int’l Symposium

33



on Parallel and Distributed Computing (ISPDC ’08), Krakow, Poland, June

2008.

[20] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core

Processor Parallelism. O’ Reilly Media, Inc., 2007.

[21] R. Rufai, M. Bozyigit, J. Alghamdi, and M. Ahmed. Multithreaded Parallelism

with OpenMP. Parallel Processing Letters, 15(4):367–378, 2005.

[22] B. Saha, A. Adl-Tabatabai, A. Ghuloum, M. Rajagopalan, R.L. Hudson,

L. Petersen, V. Menon, B. Murphy, T. Shpeisman, E. Sprangle, A. Rohillah,

D. Carmean, and J. Fang. Enabling Scalability and Performance in a Large

Scale CMP Environment. SIGOPS Oper. Syst. Rev., 41(3):73–86, 2007.

[23] M. Sato, S. Satoh, K. Kusano, and Y. Tanaka. Design of OpenMP Compiler

for an SMP Cluster. In Proc. of the 1st European Workshop on OpenMP

(EWOMP ’99), Lund, Sweden, September 1999.

[24] S. Schneider, C. D. Antonopoulos, and D. S. Nikolopoulos. Factory: An Object-

Oriented Parallel Programming Substrate for Deep Multiprocessors. In Proc. of

the 1st Int’l Conference on High Performance Computing and Communcations

(HPCC 2005), pages 223–232, September 2005.

[25] Y. Tanaka, K. Taura, M. Sato, and A. Yonezawa. Performance Evaluation of

OpenMP Applications with Nested Parallelism. In Proc. of the Fifth Work-

shop on Languages, Compilers and Run-Time Systems for Scalable Computers

(LCR ’00), Rochester, NY, USA, May 2000.

[26] S. Thibault. A Flexible Thread Scheduler for Hierarchical Multiprocessor Ma-

chines. In Proc. of the 2nd Int’l Workshop on Operating Systems, Program-

ming Environments and Management Tools for High-Performance Computing

on Clusters (COSET-2), Cambridge, USA, June 2005.

[27] X. Tian, J. P. Hoeflinger, G. Haab, Y-K Chen, M. Girkar, and S. Shah. A com-

piler for exploiting nested parallelism in OpenMP programs. Parallel Comput-

ing, 31:960–983, 2005.

34


