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AbstratConsider an interonnetion network and the following situation: every node needs tosend a di�erent message to every other node. This is the total exhange or all-to-allpersonalized ommuniation problem, one of a number of information disseminationproblems known as olletive ommuniations. Under the assumption that a nodean send and reeive only one message at eah step (single-port model) it is seen thatthe minimum time required to solve the problem is governed by the status (or totaldistane) of the nodes in the network. We present here a time-optimal solution forany Cayley network. Rings, hyperubes, ube-onneted yles, butteries are somewell-known Cayley networks whih an take advantage of our method. The solutionis based on a lass of algorithms whih we all node-invariant algorithms and whihbehave uniformly aross the network.
Keywords:Cayley graphs, olletive ommuniations, interonnetion networks, node-invariantalgorithms, total exhange (all-to-all personalized ommuniation)
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1 Introdution
Colletive ommuniations for distributed-memory multiproessors have reeivedonsiderable attention, as for example is evident from their inlusion in the Mes-sage Passing Interfae standard [17℄ and from their importane in supportingvarious onstruts in High Performane Fortran [12, 16℄. This is easily justi�edby their frequent appearane in parallel numerial algorithms [13, 5℄.Broadasting, sattering, gathering, multinode broadasting (sometimes alledgossiping) and total exhange onstitute a set of representative information dis-semination problems that have to be eÆiently solved in order to maximizethe performane of message-passing parallel programs. Out of this set, totalexhange will be the subjet of this paper. In total exhange, eah node ina network has distint messages to send to all the other nodes. The problemhas often, and quite reasonably, been identi�ed with matrix transposition. It iseasy to see why: if the network has n nodes and eah node stores a row of ann�n matrix then in order to transpose the matrix, eah node has to distributethe elements of its row to all the other nodes. Of ourse the appliation oftotal exhange is not limited to matrix transposition; other data permutationsourring e.g. in FFT algorithms an also be viewed as total exhange prob-lems. Total exhange is also known as multisattering or all-to-all personalizedommuniation.Algorithms to solve the problem for a number of networks under a varietyof models/assumptions have appeared in the literature mostly onentratingin hyperubes and tori (e.g. [20, 14, 4, 21, 10℄). Here we are going to followthe so-alled single-port model in a store-and-forward network. Formally, ourproblem will be the distribution of distint messages from every node to everyother node subjet to the following onditions [11℄:� only adjaent nodes an exhange messages,� a message requires one time unit (or step) in order to be transferred be-tween two nodes,
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� a node an send at most one message and reeive at most one message ineah step.Under this model, time-optimal total exhange algorithms have been given in[5, pp. 81{83℄ for hyperubes (although highly involved), in [18℄ for star graphs,and in [10℄ for general artesian produt networks.In this paper we are going to show that it is possible to solve the problem inthe minimum time in any Cayley network. Hyperubes and star graphs belongto the lass of Cayley networks, as do omplete graphs, rings, ube-onnetedyles, (wrapped) butteries and many other interesting and widely studiednetworks whose signi�ane is well-known [15℄. Communiation algorithms forreently proposed Cayley graphs either do not address the total exhange prob-lem (e.g. in [3℄ for stars and panakes, and in [23℄ for yli-ubes) or are notstritly optimal under the model we onsider (e.g. the proposed total exhangealgorithm for the maro-stars in [22℄). In ontrast, our method ahieves absoluteoptimality as far as ompletion time is onerned. In the ase of hyperubesand star graphs, where optimal solutions are already known, our method anstill be important sine it leads to muh simpler algorithms, as shown in Setion6. Furthermore, what is more important is that the developed theory is not tiedto a partiular topology; it is quite general and applies to any Cayley graph.The paper is organized as follows. Setion 2 introdues some elementarygraph-theoreti and group-theoreti notation. In Setion 3 we derive a simpleproperty of Cayley networks whih will be useful for our arguments. In Setion4 we give a lower bound for the time needed to perform total exhange under thesingle-port model. In the same setion we give suÆient onditions for ahievingthe lower bound. We then proeed to formally de�ne the lass of node-invariantalgorithms and prove its optimality for the total exhange problem in Setion 5.A simple node-invariant algorithm is given in Setion 6, along with an examplein hyperubes. Finally, Setion 7 summarizes the results.
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2 Graph-theoreti and group-theoreti notions
An (undireted) graph G onsists of a set V of nodes (or verties) interonnetedby a set E of (undireted) edges. This is the usual model of representing amultiproessor interonnetion network: eah proessor orresponds to a nodeand eah ommuniation link orresponds to an edge. Thus the terms `graph'and `network' will be onsidered synonymous here. Nodes onneted by an edgein E are adjaent to eah other. Nodes adjaent to v 2 V are neighbors of v.A path in G from node v to node u is a sequene of nodesv = v0; v1; : : : ; v` = u;suh that all verties are distint and for all 0 � i � `, the edge (vi; vi+1) 2 E.We say that the length of a path is ` if it ontains `+1 verties. In a onnetedgraph there exists a path between any two nodes, and this is the lass of graphswe onsider here. The distane, dist(v; u), between verties v and u is the lengthof a shortest path between v and u. Finally, the eentriity of v, e(v), is thedistane to a node farthest from v, i.e.e(v) = maxu2V fdist(v; u)g:An automorphism of the graph is a mapping from the verties to the vertiesthat preserves the edges. Formally, an automorphism of G is a permutation �of V suh that (�(v); �(u)) 2 E if and only if (v; u) 2 E. If for any pair ofverties v, u there exists an automorphism that maps v to u then the graph isnode symmetri.A group onsists of a set G and an assoiative binary operation `�' on G withthe following two properties. There exists an identity element | that is anelement � 2 G for whih a � � = � � a = a for all a 2 G | and for eah a 2 Gthere exists an inverse element, denoted by a�1 | that is an element a�1 2 Gfor whih a � a�1 = a�1 � a = �. The inverse of an element is unique. It isknown that the set of automorphisms of a graph G is a group with respet tothe omposition operation, and we will denote it by �(G).5



Cayley graphs [6, 1℄ are based on groups and onstitute a large lass of nodesymmetri networks. Given a set � = f1; 2; : : : ; dg of generators for a groupG, a Cayley graph has verties orresponding to the elements of G and edgesorresponding to the ation of the generators. That is, if v; u 2 G, the edge(v; u) exists in G i� there is a generator  2 � suh that v �  = u. A usualassumption is that the identity element of G does not belong to � (in order toavoid edges from a node to itself) and that � is losed under inverses (so thatthe graph is in e�et undireted).The lass inludes quite important networks suh as the hyperube, the(wrapped) buttery , the ube-onneted yles [2, 19, 9℄. Also, onneted iru-lant graphs [7℄ (whih inlude the rings) are Cayley networks [6℄. More reentlyproposed Cayley graphs inlude the yli-ubes [23℄ and the maro-stars [22℄.
3 An automorphism property of Cayley graphs
Consider a Cayley graph G with node set V = G = fv0; v1; : : : ; vn�1g, and themapping: �vi(vx) = vi � v�10 � vx; (1)where v�10 is the inverse element of v0 in V . It is easily seen that this mappingis an automorphism of the graph [1℄. Let �(G) be the set of the n mappingsde�ned by (1) for i = 0; 1; : : : ; n� 1:

�(G) = f�vi j i = 0; 1; : : : ; n� 1g:
The mappings in �(G) have the following properties:� �vi maps v0 to vi� �v0 is the identity mapping� If i 6= j, then:

��vi (vj)(vx) = �vi(vj) � v�10 � vx6



= vi � v�10 � vj � v�10 � vx= �vi(vj � v�10 � vx)= �vi(�vj(vx));that is, ��vi (vj) = �vi�vj ; (2)the omposition of mappings �vi and �vj .Notie that �(G) may not be the only set of automorphisms whih satisfy(2). Also, if the network is known, the automorphisms may obtain a (omputa-tionally) simpler form. As an example, onsider a ring with n nodes. Node viis adjaent to nodes vi�1 and vi	1 where � and 	 denote addition and subtra-tion modulo n. An easy set �(G) of automorphisms with the desired propertiesonsists of the following mappings:�vi(vx) = vi�x;i = 0; 1; : : : ; n � 1. Atually, the above mappings work for any (onneted)irulant graph.During total exhange nodes are required to send messages to various des-tinations. If a node holds a number of messages to be forwarded, at eah stepit must selet one of them and send it to one of its neighboring nodes. Thus,before the seleted message is transmitted the node must hoose a neighboraording to some prede�ned rules. What we would like to establish is that atany step all nodes in the network hoose \equivalent" neighbors. This way wean expet that all nodes operate in a uniform manner, and whatever ours atnode v0 ours \equivalently" at all the other nodes. The preeding ommentsare formalized in the following lemma.Lemma 1 Let v0 pik one of its neighbors, va, and let every other node vi,i = 1; 2; : : : ; n� 1, pik neighbor �vi(va). Then(a) every node is piked by exatly one other node and(b) if vb is the node that piks v0 then �vi(vb) is the node that piks vi.7



Proof.(a) For the �rst part, all we have to show is that �vi(va) 6= �vj(va) for i 6= j.Let us assume that for some j 6= i we have �vi(va) = �vj(va) = vk, for somek. Then �vk = ��vi (va), and from (2), �vk = �vi�va. Similarly, �vk = �vj�va.Consequently, �vi�va = �vj�va , or �vi = �vj , whih annot hold.(b) Let vb be the node that piks v0, that is v0 = �vb(va). Sine vi = �vi(v0)(�vi maps v0 to vi), we obtain vi = �vi(�vb(va)). From (2) we get vi =��vi (vb)(va). This means that node �vi(vb) piked vi. 2
4 Lower bound on total exhange time
In the total exhange problem, every node v has to send n�1 distint messages,one to eah of the other nodes in an n-node network. If there exist nd nodes indistane d from v, where d = 1; 2; : : : ; e(v), then the messages sent by v mustross s(v) = e(v)Xd=1 dndlinks in total. For all messages to be exhanged, the total number of linktraversals must be SG = Xv2V s(v):The quantity s(v) is known as the total distane or the status [8℄ of node v.Every time a message is ommuniated between adjaent nodes one linktraversal ours. If nodes are allowed to transmit only one message per step, themaximum number of link traversals in a single step is at most n. Consequently,we an at best subtrat n units from SG in eah step, so that a lower bound ontotal exhange time is T � SGn : (3)
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Beause all nodes in a node symmetri graph have the same status [8℄, it is seenthat for suh networks the lower bound is simply T � s(v), where v is any node.Based on the above disussion we immediately have the following suÆientonditions in order for a total exhange sheme to ahieve the lower bound of(3): all nodes are busy all the time, and, (4)every transmitted message gets loser to its destination. (5)The onditions guarantee that n units are subtrated from SG at every step,whih is the best we an do. Notie that we must require that transmittedmessages are not derouted , that is, they always follow minimal paths, gettingloser to their destination after eah link traversal.
5 Optimal algorithms
Every node vi in the network maintains a message queue, Qvi, where inomingmessages from neighbors are deposited until they are sheduled for transfer tosome other node. Initially, Qvi ontains the n � 1 messages of vi for the othernodes. As time passes, messages originating from other nodes join this queueon their way to their destination. If an inoming message is destined for vi it isassumed that it does not join the message queue but is rather forwarded to theloal proessor for onsumption.At node vi some loal algorithm Avi operates in order to shedule the mes-sage transfers. Whenever there exist messages in Qvi , algorithm Avi is respon-sible for seleting:(i) the message to leave in the next time unit, and,(ii) the neighbor of vi to whih the message will be sent.De�nition 1 A distributed total exhange algorithmA = (Av0;Av1; : : : ;Avn�1)is a olletion of loal algorithms, algorithm Avi running on node vi, i =0; 1; : : : ; n � 1. Algorithm Avi is written as Avi = (fvi ; wvi), where, given a9



message queue Qvi, proedure fvi selets a message fvi(Qvi) = m and wvi se-lets a neighbor wvi(m) of vi.The idea now is to �x a node in the network (say v0) and to make all theother nodes behave in a similar way with v0. We will design the algorithms insuh a way that every node vi selets a message \orresponding" to the messageseleted by node v0 and sends it to a neighbor \orresponding" to the neighborseleted by v0. This way we expet that the algorithm will behave uniformlyaross the network. This uniformity is highly desirable beause it will foreall nodes to have \orresponding" messages queues at eah step; hene we anargue that message queues always have the same size. We will then be ableto guarantee that all queues beome empty at the same time. This is exatlythe time when total exhange is ompleted, and ondition (4) will have beensatis�ed.In order to desribe algorithms with a uniform behavior, we need the follow-ing notation. Let mvx(vy) be the message of node vx (soure) meant for node vy(destination). For an automorphism � 2 �(G), let �(mvx(vy)) be the messageof node �(vx) destined for node �(vy), i.e.�(mvx(vy)) def= m�(vx)(�(vy)):Finally, let Q be a set of messages. We de�ne:�(Q) def= n�(mvx(vy)) j mvx(vy) 2 Qo:De�nition 2 Let G be a Cayley graph and let �(G) = f�vi j i = 0; 1; : : : ; n�1g be a set of automorphisms that satisfy (2). A total exhange algorithmA = (Av0; : : : ;Avn�1) where Avi = (fvi ; wvi), i = 0; 1; : : : ; n � 1, will be allednode-invariant if for any message queue Q and any message m it satis�esfvi(�vi(Q)) = �vi(fv0(Q))wvi(�vi(m)) = �vi(wv0(m)):
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Lemma 2 If Qvi(t) is the queue of node vi at time t, i = 0; 1; : : : ; n � 1, thenany node-invariant algorithm guarantees that
Qvi(t) = �vi(Qv0(t));for all t � 0, where �vi is as given in De�nition 2.

Proof. The proof is by indution on t. Initially (t = 0) we have that
Qv0 = fmv0(vj) j j = 1; 2; : : : ; n� 1g:

Beause automorphisms are bijetions �vi(vk) 6= �vi(v`) if k 6= `. Consequently,the set f�vi(vj) j j = 1; 2; : : : ; n � 1g ontains all nodes of G exept node vi(sine for j = 0, �vi(v0) = vi). Thus the message set S = fmvi(�vi(vj)) j j =1; 2; : : : ; n�1g is the same as the set S 0 = fmvi(vk) j k = 0; 1; : : : ; n�1; k 6= ig.Notie that S 0 = Qvi(0). If we write vi as �vi(v0), and use (2) it is straightforwardto derive that S = �vi(Qv0(0)), showing that Qvi(0) = �vi(Qv0(0)).Next, assume as an indution hypothesis that for some t � 0,
Qvi(t) = �vi(Qv0(t)): (6)

For time t+1 we proeed as follows. For simpliity, let ms(vi) = fvi(Qvi(t)) andvs(vi) = wvi(ms(vi)). That is, ms(vi) is the message seleted by vi, and vs(vi) isthe neighbor of vi to whih the seleted message will be sent . From (6) and thede�nition of node-invariant algorithms it is easily seen that
ms(vi) = �vi(ms(v0)); (7)vs(vi) = �vi(vs(v0)): (8)

Now notie that vs(v0) is the neighbor v0 piked to send the message to. From(8) it is seen that Lemma 1 applies so that every node reeives exatly onemessage, and that, if vr(v0) is the neighbor from whih v0 reeives a messagethen vr(vi) = �vi(vr(v0)) (9)
11



is the neighbor from whih vi reeives its (unique) message. Moreover, if mr(vi)is the message reeived by vi, we obtainmr(vi) = ms(vr(vi))= �vr(vi)(ms(v0))= ��vi (vr(v0))(ms(v0))= �vi(�vr(v0)(ms(v0)));and sine mr(v0) = ms(vr(v0)) = �vr(v0)(ms(v0)),mr(vi) = �vi(mr(v0)): (10)To reapitulate, any node vi selets a message ms(vi) given by (7), sends it tosome node vs(vi) given by (8) and reeives a message mr(vi) given by (10) fromsome node vr(vi) given by (9). If the destination of mr(v0) is node v0, then from(10) it is seen that the destination of mr(vi) is node vi. Conversely, if mr(v0) isnot meant for v0 then mr(vi) is not meant for vi. In the �rst ase at node v0 wewill have Qv0(t+ 1) = Qv0(t) n fms(v0)g;sine mr(v0) does not join the queue, and in the seond ase,Qv0(t+ 1) = Qv0(t) [ fmr(v0)g n fms(v0)g; (11)where `n' is the set-theoreti di�erene. In the seond ase (the �rst ase istreated identially), for node vi we haveQvi(t+ 1) = Qvi(t) [ fmr(vi)g n fms(vi)g:Using (6), (7), (10) and (11),Qvi(t+ 1) = �vi(Qv0(t)) [ f�vi(mr(v0))g n f�vi(ms(v0))g= �vi�Qv0(t) [ fmr(v0)g n fms(v0)g�= �vi(Qv0(t+ 1));onluding the indution. 2
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Lemma 3 If node v0 never deroutes a message then the same is true for everyother node vi, i = 1; 2; : : : ; n� 1.
Proof. If at some time t node v0 selets message mvx(vy) out of its queue andsends it to some neighbor vs, then any node vi selets message �vi(mvx(vy)) andsends it to neighbor �vi(vs) as we have already seen (equations (7){(8)). All wehave to show is that if vs is on a shortest path from v0 to vy (i.e. v0 does notderoute the message) then �vi(vs) is on a shortest path from vi to �vi(vy).This is easy to do beause automorphisms preserve distanes [6℄. That is, if �is an automorphism of a graph G then dist(v; u) = dist(�(v); �(u)) for any twoverties v and u of G. If v0 does not deroute then dist(v0; vy) = dist(vs; vy)+ 1.Then, we must have dist(vi = �vi(v0); �vi(vy)) = dist(�vi(vs); �vi(vy)) + 1 and�vi(vs) indeed lies on a shortest path from vi to �vi(vy). 2
Theorem 1 Any node-invariant algorithm for whih wv0 selets shortest pathsis an optimal total exhange algorithm for Cayley graphs.
Proof. From Lemma 2 it is seen that all nodes have the same queue size at anystep. Thus all nodes beome idle (all queues are empty, hene total exhangeis ompleted) at the same time. From Lemma 3 no message is derouted if wv0selets shortest paths. Consequently, both onditions (4) and (5) are satis�edand the algorithm solves the problem optimally. 2

Summarizing, we just showed that there exists a lass of algorithms, allednode-invariant algorithms, whih are able to solve the total exhange problemoptimally in any Cayley network. Most reasonable algorithms, suh as furthest-�rst, losest-�rst, et. shemes are valid andidates, as long as they do not stayidle when a queue ontains messages and they are repliated \onsistently" atall nodes in the network. In the next setion we provide a partiularly simplenode-invariant algorithm and we give a omplete example in the ontext ofhyperubes.
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6 A simple node-invariant algorithm
Assume that we have an algorithm W that knows the shortest routes fromnode v0 to any other node. In other words, W takes a message, looks at itsdestination and piks a neighbor of v0 whih lies on a shortest path from v0 to thedestination of the message. It is always possible to onstrut suh an algorithmW for any network, e.g. using a table look-up proedure. More eÆient shemesare possible if the struture of the network is known. For example, in a ring Rnwe an have W(mvx(vy)) = 8<: v1 if y � n=2vn�1 otherwise(nodes v1 and vn�1 are the two neighbors of node v0).Let us treat a message queue as a set of messages that behaves as a FIFOqueue. At node v0 we initially sort destinations in any desired order. Forinstane, Qv0(0) = fmv0(v1);mv0(v2); : : : ;mv0(vn�1)g:Suppose that the right end is the head of the FIFO queue and the left end isits tail. Departing messages will leave from the head of the queue. Arrivingmessages will join at the tail of the queue as long as they are not destined for theurrent node; otherwise they are immediately forwarded to the loal proessor.We have to guarantee that initially Qvi(0) is equal to �vi(Qv0(0)), so we letQvi(0) = fmvi(�vi(v1));mvi(�vi(v2)); : : : ;mvi(�vi(vn�1))g:The loal algorithm Avi = (fvi ; wvi) is de�ned as follows:fvi(Q) : selet the message at the head of the queue Q.It is trivial to see that fvi(�vi(Q)) = �vi(fv0(Q)): ifm is the message at the headof Q then �vi(m) is obviously the message at the head of �vi(Q). Sine m =fv0(Q) and �vi(m) = fvi(�vi(Q)), it is derived that �vi(fv0(Q)) = fvi(�vi(Q)).Finally, let ��1 be the inverse mapping of �. The existene and the unique-ness of ��1 is guaranteed by the fat the the set �(G) of the automorphisms of14



the graph is a group. Given W we de�ne:wvi(m) : for message m selet neighbor �vi�W(��1vi (m))�.We only have to show that wvi(�vi(m)) = �vi(wv0(m)), for any message m.Notie that �v0 is taken to be the identity mapping so that wv0 is atually thesame as W. Thus we have to show that wvi(�vi(m)) = �vi(W(m)). Indeed,from the desription of wvi above, we have:wvi(�vi(m)) = �vi�W(��1vi (�vi(m)))� = �vi(W(m));sine ��1vi �vi is the identity.In summary, the algorithm shown in Fig. 1 is, based on De�nition 2, node-invariant. Therefore, it is an optimal total exhange algorithm for any Cayleynetwork, aording to Theorem 1.
6.1 An example: hyperubesTo illustrate the theory developed in the previous setions we will onstrutan algorithm for hyperubes, based on the algorithm in Fig. 1. An optimalalgorithm was given in [5, pp. 81{83℄ but is not in expliit form, and it is basedon a rather involved algorithm for the multiport model (where a node may sendmessages to all its neighbors simultaneously).Let � be the exlusive-or (addition modulo 2) operation. If the binaryrepresentation of x is (xd�1; : : : ; x1; x0) then the bitwise exlusive-or operation,�b, is de�ned as x�b y = (xd�1 � yd�1; : : : ; x1 � y1; x0 � y0):Dropping `v' from the name of node vi, a hyperube Qd has node set V =f0; 1; : : : ; 2d�1g. A node i has neighbors i�b 20, i�b 21, . . . , i�b 2d�1. In orderto apply the algorithm in Fig. 1 we need to identify three quantities:� De�ning a simple �(G):The following is an automorphism of the hyperube [15℄ that maps node15



0 to node i: �i(x) = i�b x: (12)Beause of the assoiativity of exlusive-or, it is seen that��i(j)(x) = i�b j �b x = �i(�j(x));for any node j, so that the set of automorphisms given by (12) for i =0; 1; : : : ; 2d � 1 satisfy (2).� Obtaining ��1i :Beause i�b i = 0, it is seen that ��1i = �i.� Construting W:It is known that if in the binary representation of y, yk = 1 for some kthen neighbor 2k of node 0 lies on a shortest path from 0 to y, that isW(mx(y)) = 2k. Usually, k is seleted to be the leftmost non-zero bitposition of y in order to omply with the standard e-ube routing.Consequently, the algorithm of the last setion takes the simple form shownin Fig. 2 and onstitutes an optimal total exhange algorithm for hyperubes.
7 Disussion
We onsidered the total exhange problem under the single-port model in thesetting of Cayley graphs. It was shown that as long as every node sends a mes-sage at every step and the message is not derouted, the optimal ompletion timeis guaranteed. A partiular type of algorithms, whih we named node-invariantalgorithms, always satisfy these optimality onditions and hene onstitute op-timal solutions to the total exhange problem.The only requirement for our arguments to work was that the network pos-sesses a set of isomorphisms that satisfy (2). In any network whih has thisproperty (Cayley graphs do) node invariant algorithms an be de�ned and uti-lized for the total exhange problem. We would like to see what other networks,16



apart from Cayley ones, possess property (2). Is (2) satis�ed in any node sym-metri network?As a last note, it is interesting to mention that total exhange an be viewedas a spei� ase of isotropi ommuniation problems, as originally onsideredby Varvarigos and Bertsekas [21℄. In our setting, a ommuniation problem willbe named isotropi if whenever node v0 has ki � 0 messages to send to nodevi, node vx has ki messages to send to �vx(vi), for all i; x = 1; 2; : : : ; n � 1.In e�et, all that is required for a ommuniation problem to be isotropi isthat at time t = 0, Qvi = �vi(Qv0). All our arguments and all our results areimmediately appliable to any isotropi ommuniation problem. An optimalalgorithm still has to satisfy onditions (4){(5) and any node-invariant algorithmdoes. Consequently, as long as Qvi is appropriately set at time t = 0, thealgorithm in Fig. 1 is an optimal algorithm for any problem of the isotropitype.A interesting diretion of future researh is the development of total ex-hange algorithms for multiport Cayley networks. In suh a setting, eah nodehas the apabilities to ommuniate with all its neighbors simultaneously. Al-though node-invariant algorithms ould still be signi�ant, it seems that theyare not suÆient to enfore optimality. It is not enough to keep all nodes busy;one must rather keep all links busy. In suh a ase edge symmetries should playa more important role than node symmetries.
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Avi : (i = 0; 1; : : : ; n� 1)At t = 0 setQvi = nmvi(�vi(v1));mvi(�vi(v2)); : : : ;mvi(�vi(vn�1))o;and letfvi(Qvi): selet the message at the head of the queue Qvi,wvi(m): if m = fvi(Qvi), selet neighbor �vi�W(��1vi (m))�,Figure 1: An optimal total exhange algorithm for Cayley networks. The queuesare FIFO. Messages join at the left end and depart from the right end of thequeue.

20



Ai: (i = 0; 1; : : : ; n� 1)At t = 0 setQi = nmi(i�b 1);mi(i�b 2); : : : ;mi(i�b (n� 1))o.At any step t � 0,� selet the message at the head of Qi (say mx(y))� send it to node i�b 2k where k is the leftmostnon-zero bit position of i�b y.Figure 2: An optimal total exhange algorithm for d-dimensional hyperubes.The standard e-ube routing paths are followed at every transmission.
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