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Abstract

Nested parallelism has been a major feature of OpenMP since its very beginnings.
As a programming style, it provides an elegant solution for a wide class of paral-
lel applications, with the potential to achieve substantial utilization of the available
computational resources, in situations where outer-loop parallelism simply can not.
Notwithstanding its significance, nested parallelism support was slow to find its way
into OpenMP implementations, commercial and research ones alike. Even nowadays,
the level of support is varying greatly among compilers and runtime systems.

In this work, we take a closer look at OpenMP implementations with respect to
their level of support for nested parallelism. We classify them into three broad cate-
gories: those that provide full support, those that provide partial support and those
that provide no support at all. The systems surveyed include commercial and research
ones. Additionally, we proceed to quantify the efficiency of the implementation. With
a representative set of compilers that provide adequate support, we perform a com-
parative performance evaluation. We evaluate both the incurred overheads and their
overall behavior, using microbenchmarks and a full-fledged application. The results
are interesting because they show that full support of nested parallelism does not nec-
essarily guarantee scalable performance. Among our findings is the fact that most
compilers do not seem to handle nested parallelism in a predictable and stable way as
the number of threads increases beyond the system’s processor count.

1. Introduction

OpenMP [27] has become a standard paradigm for programming symmetric shared memory
multiprocessors (SMP), as it offers the advantage of simple and incremental parallel pro-
gram development, in a high abstraction level. Its usage is continuously increasing as small
SMP machines have become the mainstream architecture even in the personal computer
market. Nested parallelism, a major feature of OpenMP, has the potential of benefiting a
broad class of parallel applications to achieve optimal load balance and speedup, by allow-
ing multiple levels of parallelism to be active simultaneously. This is particularly relevant
these days in emerging SMP environments with multicore processors.



For applications that have enough (and balanced) outer-loop parallelism, a small num-
ber of coarse threads is usually enough to produce satisfactory speedups. In many other
cases though, including situations with multiple nested loops, or recursive and irregular
parallel applications, threads should be able to create new teams of threads because only a
large number of threads has the potential to achieve good utilization of the computational
resources.

Although many OpenMP compilation systems provide support for nested parallelism,
there has been no comprehensive study up to now regarding the level and the efficiency
of such a support. It can be seen that the existing OpenMP implementations exhibit
significant runtime overheads which are mainly due to their adopted kernel-level threading
model. In general, there are several design issues and performance limitations that need
to be addressed effectively.

This work discusses the main issues that are related to the runtime support of nested
parallelism in OpenMP.We survey existing implementations and discuss the type of support
they offer. Based on previous knowledge and infrastructure, we also develop a set of
appropriate microbenchmarks that measure the runtime overheads of OpenMP when nested
parallelism is exploited. A comparative performance evaluation assesses the advantages and
limitations of several OpenMP implementations, both commercial and research ones.

The rest of this chapter is organized as follows: in Section 2. we discuss nested paral-
lelism in general. We also present the mechanisms OpenMP provides for controlling nested
parallelism. In Section 3. we survey existing OpenMP implementations and discuss the
level of nested parallelism support they provide; both commercial and research compilers
are examined. Section 4. is devoted to the evaluation of the performance of a number of
compilers when it comes to nested parallelism, while Section 5. summarizes the results of
this study.

2. Nested Parallelism

Nested parallelism is becoming increasingly important as it enables the programmer to
express a wide class of parallel algorithms in a natural way and to exploit efficiently both
task and loop-level parallelism. Several studies with production codes and application
kernels have shown the significant performance improvements of using nested parallelism.
Despite some deficiencies in the current support of nested parallelization, many OpenMP
applications have benefited from it and managed to increase their scalability mainly on
large SMP machines [1, 2, 5, 31].

2.1. What OpenMP Specifies

Nested parallelism in OpenMP is effected either by a nested parallel construct (i.e. a
parallel region within the lexical extend of another parallel region) or by an orphaned
construct, where a parallel region appears in a function which is called within the dynamic
extend of another parallel region in the program.

In Fig. 1 the classic example of Fibonacci numbers is shown; the nth Fibonacci number
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is calculated recursively as the sum the (n− 1)th and the (n− 2)th, through an orphaned
parallel construct. In each recursive call, two threads are spawned resulting in a expo-
nential total population. Recursion-based nested parallelism is an elegant programming
methodology but can easily lead to an overwhelming number of threads.

int fib(int n)

{

int f1,f2;

if (n < 2) return 1;

#pragma omp parallel sections num_threads(2)

{

#pragma omp section

f1 = fib(n-1); /* Recursive call */

#pragma omp section

f2 = fib(n-2); /* Recursive call */

}

return f1+f2;

}

Figure 1. Fibonacci numbers using nested parallelism.

The OpenMP specifications leave support for nested parallelism as optional. Imple-
mentations are considered compliant even if they don’t support nested parallelism; they
are allowed to execute the nested parallel region a thread encounters by a team of just
1 thread, i.e. nested parallel regions may be serialized. Because of the difficulty in han-
dling a possibly huge number of threads, many implementations provide support for nested
parallelism but with certain limitations. For example, there may exist an upper limit on
the depth of nesting or on the total number of simultaneously active threads.

Nested parallelism can be enabled or disabled either during program startup through
the OMP_NESTED environment variable or dynamically (any time at runtime) through an
omp_set_nested() call. The omp_get_nested() call queries the runtime system whether
nested parallelism is enabled or not. In runtime systems that do not support nested
parallelism, enabling or disabling it has no effect whatsoever.

To control the number of threads that will comprise a team, the current version
of OpenMP (2.5) provides the following mechanism: the default number of threads
per parallel region is specified through the OMP_NUM_THREADS environment variable.
In the absence of such a variable, the default is implementation dependent. The
omp_set_num_threads() call can be used at runtime to set the number of threads that
will be utilized in subsequent parallel regions. Finally, a num_threads(n) clause that
appears in a parallel directive requests this particular region to be executed by n threads.

However, the actual number of threads dispatched in a parallel region depends also
on other things. OpenMP provides a mechanism for the dynamic adjustment of the number
of threads which, if activated, allows the implementation to spawn fewer threads than what
is specified by the user. In addition to dynamic adjustment, factors that may affect the
actual number of threads include the nesting level of the region, the support/activation of
nested parallelism and the peculiarities of the implementation. For example, some systems
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maintain a fixed pool of threads, usually equal in size to the number of available processors.
Nested parallelism is supported as long as free threads exist in the pool, otherwise it is
dynamically disabled. As a result, a nested parallel region may be executed by a varying
number of threads, depending on the current state of the pool.

OpenMP has been architected mainly with the first (outer) level of parallelism in mind
and certain features are not thoroughly thought out. For one, in the first version of the
specifications [24, 25] there was no way to control the number of threads in inner levels,
since omp_set_num_threads() can only be called from the sequential parts of the code;
the num_threads clause was added in the second version of OpenMP [26] to overcome this
limitation. There are also a few parts in the specifications which are unclear when applied
to nested levels, e.g. the exact meaning of the persistence of threadprivate variable values
between parallel regions. Finally, there are some features that are completely lacking;
ancestor-descendant interaction and intra-team shared variables are only two of them.

The upcoming version of the OpenMP specifications is expected to clarify some ambi-
guities and provide a richer functional api for nested parallelism; [7] discloses the following
self-explanatory calls:

omp_get_nested_level()

omp_set_max_nested_levels()

omp_get_max_nested_levels()

omp_set_thread_limit()

omp_get_thread_limit()

while it will be possible to call omp_set_num_threads() from within parallel regions, so
as to control the number of threads for the next nesting level. There seem to also exist
provisions for identifying one’s parent (i.e. the master thread of a team), as well as any
other ancestor.

3. Support in Compilers

According to the OpenMP specifications, an implementation which serializes nested
parallel regions, even if nested parallelism is enabled through the OMP_NESTED environ-
ment variable or the omp_set_nested() call, is considered compliant. An implementation
can claim support of nested parallelism if nested parallel regions (i.e. at levels greater than
1) may be executed by more than 1 thread. Nowadays, several commercial and research
compilers support nested parallelism, either fully or partially. Partial support implies that
there exists some kind of limit imposed by the implementation. For example, there exist
systems that support a fixed number of nesting levels; some others allow an unlimited
number of nested levels but have a fixed number of simultaneously active threads. In the
latter case, a nested parallel region may be executed by a smaller number of threads
than the one requested, if there are not enough free threads. The decision of the team size
is made at the beginning of a parallel region. If later, however, some threads become
idle, they will not be able to participate in the parallel execution of that region.
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Notice that a nested parallel region which includes a num_threads(n) clause must be
executed by exactly n threads, as requested, unless dynamic adjustment of the number of
threads is turned on. Thus, those systems that limit the number of simultaneously active
threads cannot be used with a disabled dynamic adjustment. Consequently, we consider
an implementation as providing full support if it imposes no limit on the number of nesting
levels or the number of simultaneously active threads and does not serialize nested regions
when dynamic adjustment of threads is disabled.

The majority of OpenMP implementations instantiate their OpenMP threads with
kernel-level threads, utilizing either the posix-threads API or the native threads provided
by the operating system. The utilization of kernel threads limits the size of the thread pool
and consequently the maximum number of OpenMP threads. In addition, it introduces
significant overheads in the runtime library, especially if multiple levels of parallelism are
exploited. When the number of threads that compete for hardware recourses significantly
exceeds the number of available processors, the system is overloaded and the parallelization
overheads outweigh any performance benefits. Finally, it becomes quite difficult for the
runtime system to decide the distribution of inner-level threads to specific processors in
order to favor computation and data locality.

3.1. Proprietary Compilers

Not all proprietary compilers support nested parallelism and some support it only in part.
Below, we provide a summary of the level of support in various known systems.

• Fujitsu: The Fujitsu primepower compilers in the Parallelnavi software pack-
age [19] support nesting of parallel regions. Moreover, a high performance OpenMP
runtime library is available for OpenMP applications with single-level parallelism.

• HP: The HP compilers for the HP-UX 11i operating system support dynamically
nested parallelism [16]. When nested parallelism is enabled, the number of threads
used to execute nested parallel regions is determined at runtime by the underlying
OpenMP runtime library. The maximum number of threads is dependent upon the
load on the system, the amount of memory allocated by the program and the amount
of implementation dependent stack space allocated to each thread. The latest releases
of HP-UX contain new thread functionality, providing the possibility for multiple
posix threads of a process to map to a smaller number of kernel threads. Therefore,
the OpenMP runtime library takes advantage of the hybrid (M:N) threading model.

• Intel: The basic mechanism for threading support in the Intel compilers [36] is the
thread pool. The threads are not created until the first parallel region is executed,
and only as many as needed by that parallel region are created. Additional threads
are created as needed by subsequent parallel regions. Threads that are created by
the OpenMP runtime library are not destroyed. Instead, they join the thread pool
until they are called upon to join a team and are released by the master thread
of the subsequent team. Since the Intel compiler maps OpenMP threads to kernel
threads, its runtime library uses the KMP_MAX_THREADS environment variable to set
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the maximum number of threads that it will use. This gives the user the freedom to
utilize any number of threads or to limit them to the number of physical processors,
so that an application or a library used by an application does not oversubscribe the
system with OpenMP threads. The library will attempt to use as many threads as
requested at every level, until the KMP_MAX_THREADS limit is reached.

• Microsoft: Visual C++ 2005 provides a new compiler switch that enables the com-
piler to understand OpenMP directives [11]. Visual C++ allows nested parallel

regions, where each thread of the original parallel region becomes the master of its
own thread team. Nested parallelism can continue to further nest other parallel re-
gions. This process of creating threads for each nested parallel region can continue
until the program runs out of stack space.

• Sun: The OpenMP runtime library of the Sun Studio compilers [30] maintains a pool
of threads that can be used as slave threads in parallel regions. When a thread en-
counters a parallel construct and needs to create a team of more than one thread,
the thread will check the pool and grab idle threads from the pool, making them
slave threads of the team. The master thread might get fewer slave threads than it
needs if there is not a sufficient number of idle threads in the pool. When the team
finishes executing the parallel region, the slave threads return to the pool. The
user can control both the number of threads in the pool and the maximum depth
of nested parallel regions that may utilize more than one thread. This is per-
formed through the SUNW_MP_MAX_POOL_THREADS and SUNW_MP_MAX_NESTED_LEVELS

environment variables respectively.

Full support for nested parallelism is also provided in the latest version of the well
known open-source GNU Compiler Collection, GCC 4.2. libGOMP [23], the runtime
library of the system is designed as a wrapper around the posix threads library, with
some target-specific optimizations for systems that provide lighter weight implementation
of certain primitives. The GOMP runtime library allows the reuse of idle threads from a
pre-built pool only for non-nested parallel regions, while threads are created dynamically
for inner levels.

In contrast to the aforementioned cases, several other OpenMP compiler vendors do not
currently support nested parallelism. TheMIPSpro compiler and runtime environment on
the SGI Origin does not support nested parallelism. Instead, it supports multi-loop paral-
lelization for loops that are perfectly nested [35]. The current implementation of the IBM
XL compiler does not provide true nested parallelism. Instead of creating a new team of
threads for nested parallel regions, the OpenMP threads that are currently available are
re-used [17,18,22]. The PathScale Compiler Suite is a family of compilers for the AMD64
processor family, compatible with the latest specification of the OpenMP programming
model (2.5). Its Fortran version supports nested parallelism [28], as long as the number of
threads does not exceed 256 and parallel regions are not lexically nested; nested regions
should be orphaned (i.e. appear in different subroutines). Finally, the Portland Group
(PGI) compilers do not support and thus ignore nested OpenMP parallel constructs.
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The omp_set_nested() function, which allows enabling and disabling of nested parallel

regions, has currently no effect [33].

3.2. Research and Experimental Compilers

Most research OpenMP compilers are source-to-source compilation systems that transform
OpenMP-annotated source code (C/Fortran) to equivalent multithreaded code in the same
base language, ready to be compiled by the native compiler of the platform. The code also
includes calls to a runtime library that supports and controls the execution of the program.
Thread creation is based mostly on the outlining technique [8], where the code inside a
parallel region is moved to a separate function or routine, which is executed by the
spawned threads.

The next four experimental systems provide full support of nested parallelism through
the use of the appropriate runtime libraries.

• GOMP/Marcel: MaGOMP [34] is a port of GOMP on top of the Marcel threading
library [32] in which BubbleSched, an efficient scheduler for nested parallelism, is
implemented. More specifically, a Marcel adaptation of libGOMP threads has been
added to the existing abstraction layer. MaGOMP relies on Marcel ’s fully posix
compatible interface to guarantee that it will behave as well as GOMP on posix
threads. Then, it becomes possible to run any existing OpenMP application on top
of BubbleSched by simply relinking it.

• OdinMP: The Balder runtime library of OdinMP [20] is capable of fully handing
OpenMP 2.0 including nested parallelism. Balder uses posix threads as its underlying
thread library, provides efficient barrier and lock synchronization, and uses a pool of
threads, which is expanded whenever it is necessary.

• Omni: The Omni compiler [29] supports full nested parallelism but requires a user-
predefined fixed size for its kernel thread pool, where threads for the execution of
parallel regions are extracted from. Specifically, an OpenMP program creates a
fixed number of worker threads at the beginning of its execution and keeps a pool
of idle threads. Whenever the program encounters a parallel construct, it is par-
allelized if there are idle threads at that moment. Omni/ST [31], an experimental
version of Omni equipped with the StackThreads/MP library, provided an efficient
though not portable implementation of nested irregular parallelism.

• ompi: ompi [10] is a source-to-source translator that takes as input C source code
with OpenMP directives and outputs equivalent multithreaded C code, ready to
be built and executed on a multiprocessor. It has been enhanced with lightweight
runtime support based on user-level multithreading. A large number of threads can
be spawned for every parallel region and multiple levels of parallelism are supported
efficiently, without introducing additional overheads to the OpenMP library. A more
detailed description of ompi is provided in section 3.3..
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There also exist other experimental compilation systems, some of them being quite
advanced, which either provide a limited form of nested parallelism or do not support it at
all.

• CCRG: CCRG OpenMP Compiler [9] aims to create a freely available, fully func-
tional and portable set of implementations of the OpenMP Fortran specification for
a variety of different platforms, such as SMPs as well as Software Distributed Shared
Memory (sDSM) systems. CCRG uses the approach of the source-to-source trans-
lation and runtime support to implement OpenMP. The CCRG OpenMP Compiler
fully implemented OpenMP 1.0 and in part features of OpenMP 2.0 Fortran API. Its
runtime library for SMP is based on the standard posix threads interface.

• NanosCompiler: The NanosCompiler [3] for Fortran does not fully support nested
parallelism. Instead, it supports multilevel parallelization based on the concept of
thread groups, without allowing the total number of threads to exceed that of avail-
able processors. A group of threads is composed of a subset of the total number of
threads available in the team to run a parallel construct. In a parallel construct,
the programmer may define the number of groups and the composition of each one.
When a parallel directive defining groups is encountered, a new team of threads is
created. The new team is composed of as many threads as the number of groups. The
rest of the threads are used to support the execution of nested parallel constructs.
In other words, the definition of groups establishes an allocation strategy for the
inner levels of parallelism. To define groups of threads, NanosCompiler supports the
groups clause extension to the parallel directive. The NanosCompiler has been
recently replaced by its successor, the Nanos Mercurium compiler.

• Nanos Mercurium: The objective of the Nanos Mercurium compiler [4] is to offer a
compilation platform that OpenMP researchers can use to test new language features.
It is build on top of an existing compilation platform, the Open64 compiler, and uses
templates of code for specifying the transformations of the OpenMP directives. The
compiler implements most of OpenMP 2.0 along with extensions such as dynamic
sections, a relaxation of the current definition of sections, to allow parallelization
of programs that use iterative structures (such as while loops) or recursion. Since it
is based on the runtime library of the NanosCompiler, Nanos Mercurium does not
fully support nested parallelism.

• OpenUH: OpenUH [21] is a portable OpenMP compiler based on the Open64 com-
piler infrastructure with a unique hybrid design that combines a state-of-the-art op-
timizing infrastructure with a source-to-source approach. OpenUH is open source,
supports C/C++/Fortran 90, includes numerous analysis and optimization compo-
nents, and is a complete implementation of OpenMP 2.5. The thread creation trans-
formations used in OpenUH are different from the standard outlining approach; the
approach is similar to the MET (Multi-Entry Threading) technique employed in the
Intel OpenMP compiler. The compiler generates a microtask to encapsulate the code
lexically contained within a parallel region and the microtask is nested into the
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original function containing that parallel region. OpenUH does not support nested
parallelism.

The above discussion is summarized in Table 1, where we list all the aforementioned
compilers, their present status and the level of support for nested parallelism they provide.

Table 1. OpenMP implementations.

Entries marked with a star (?) represent compiler projects that seem to be dormant.

OpenMP compiler Nested parallelism Availability

CCRG 1.0 (Fortran) no freeware (?)

GCC 4.2.0 yes freeware

Fujitsu yes commercial

HP (for HP-UX 11i) yes commercial

IBM XL (C v9.0, F v11.1) no commercial

Intel 10.0 yes commercial, free

MaGOMP (GCC 4.2.0) yes freeware

Microsoft Visual C++ 2005 yes commercial

Nanos Mercurium 1.2 limited freeware

NanosCompiler (Fortran) limited freeware (?)

OdinMP 0.287.2 (C only) yes freeware (?)

Omni 1.6 yes freeware (?)

OMPi 0.9.0 (C only) yes freeware

OpenUH alpha (Fortran) no freeware

PathScale 3.0 limited commercial

PGI 7.0.6 no commercial

SGI MIPSpro 7.4 no commercial

Sun Studio 12 yes commercial, free

3.3. OMPi

ompi’s runtime system has been architected with an internal threading interface that facil-
itates the integration of arbitrary thread libraries. It comes with two core libraries that are
based on posix threads; one is optimized for single-level (non-nested) parallelism, while the
other provides limited nested parallelism support through a fixed pool of threads (the size
of which is determined at startup through the OMP_NUM_THREADS environment variable).
In order to efficiently support unlimited nested parallelism, an additional library based on
user-level threads has been developed [15], named psthreads.

The psthreads library implements a two-level thread model, where user-level threads
are executed on top of kernel-level threads that act as virtual processors. Each virtual
processor runs a dispatch loop, selecting the next-to-run user-level thread from a set of
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ready queues, where threads are submitted for execution. The queue architecture allows
the runtime library to represent the layout of physical processors. For instance, a hierarchy
can be defined in order to map the coupling of processing elements in current multicore
architectures.

Although user-level multithreading has traditionally implied machine dependence, the
psthreads library is completely portable because its implementation is based entirely
on the posix standard. Its virtual processors are mapped to posix threads, permitting
the interoperability of ompi with third-party libraries and the coexistence of OpenMP
and posix threads in the same program. The primary user-level thread operations are
provided by UthLib (Underlying Threads Library), a platform-independent thread package.
An underlying thread is actually the stack that a psthread uses during its execution.
Synchronization is based on the posix threads interface. Locks are internally mapped to
posix mutexes or spinlocks, taking into account the non-preemptive threads of the library.

The application programming interface of psthreads is similar to that of posix threads.
Its usage simplifies the OpenMP runtime library since spawning of threads is performed
explicitly, while thread pooling is provided by the thread library. The thread creation rou-
tine of psthreads allows the user to specify the queue where the thread will be submitted
for execution and whether it will be inserted in the front or in the back of the specified
queue. Moreover, there exists a variant of the creation routine that accepts an already
allocated thread descriptor. This is useful for cases where the user implements its own
management of thread descriptors.

Efficient thread and stack management is essential for nested parallelism because a
thread with a private stack should always be created since the runtime library cannot know
a priori whether the running application will spawn a new level of parallelism. An important
feature of psthreads is the utilization of a lazy stack allocation policy. According to this
policy, the stack of a user-level thread is allocated just before its execution. This results
in minimal memory consumption and simplified thread migrations. Lazy stack allocation
is further improved with stack handoff, whereby a finished thread re-initializes its own
state by replacing its descriptor with the subsequent thread’s descriptor and resumes its
execution.

In the psthreads library, an idle virtual processor extracts threads from the front of
its local ready queue but steals from the back of remote queues. This allows the OpenMP
runtime library to employ an adaptive work distribution scheme for the management of
nested parallelism. In particular, threads that are spawned at the first level of parallelism
are distributed cyclically and inserted at the back of the ready queues. For inner levels, the
threads are inserted in the front of the ready queue that belongs to the virtual processor
they were created on. The adopted scheme favors the execution of inner threads on a single
processor and improves data locality.

4. A Comparative Evaluation

In this section, we evaluate an implementation’s efficiency with respect to nested paral-
lelism. We measure both the incurred overheads and the overall behavior of a representative
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set of compilers, using microbenchmarks and an application that makes substantial use of
nested parallelism. We performed all our experiments on a Compaq Proliant ML570 server
with 4 Intel Xeon III CPUs running Debian Linux (2.6.6). We provide comparative perfor-
mance results for two free commercial and three freeware OpenMP C compilers that fully
support nested parallelism. The commercial compilers are the Intel C++ 10.0 compiler
(icc) and Sun Studio 12 (suncc) for Linux. The freeware ones are GNU GCC 4.2.0, Omni
1.6 and ompi 0.9.0. We have used GCC as native back-end compiler for both ompi and
Omni.

4.1. Overheads

The EPCC microbenchmark suite [6] is the most commonly used tool for measuring runtime
overheads of individual OpenMP constructs. This section describes the extensions we have
introduced to the EPCC microbenchmark suite for the evaluation of OpenMP runtime
support for nested parallelism.

Synchronization and loop scheduling operations can all be significant sources of over-
head in shared memory parallel programs. The technique used by the EPCC microbench-
marks to measure the overhead of OpenMP directives, is to compare the time taken for
a section of code executed sequentially with the time taken for the same code executed
in parallel enclosed in a given directive. A full description of this method is given in [6].
To obtain statistically meaningful results, each overhead measurement is repeated several
times and the mean and standard deviation are computed over all measurements. This
way, the microbenchmark suite neither requires exclusive access to a given machine nor is
seriously affected by background processes in the system.

To study how efficiently OpenMP implementations support nested parallelism, we have
extended both the synchronization and the scheduling microbenchmarks. According to
our approach, the core benchmark routine for a given construct is represented by a task.
Each task has a unique identifier and utilizes its own memory space for storing the runtime
measurements, i.e. its mean overhead time and standard deviation. When all tasks finish,
we measure their total execution time and compute the global mean of all measured runtime
overheads. Our approach, as applied to the synchronization benchmark, is outlined in
Fig. 2. The loop that issues the tasks expresses the outer level of parallelism, while each
benchmark routine includes the inner one.

If the outer loop is not parallelized, the tasks are executed in sequential order. This
actually corresponds to the original version of the microbenchmarks, having each core
benchmark repeated more than once. On the other hand, if nested parallelism is evaluated,
the loop is parallelized and the tasks are executed in parallel. The number of simultaneously
active tasks is bound by the number of OpenMP threads that constitute the team of the
first level of parallelism. To ensure that the OpenMP runtime library does not assign fewer
threads to inner levels than in the outer one, dynamic adjustment of threads is disabled.

By measuring the aggregated execution time of the tasks, we use the microbenchmark
as an individual application. This time includes not only the parallel portion of the tasks,
i.e. the time the tasks spend on measuring the runtime overhead, but also their sequential
portion. This means that even if the mean overhead increases when tasks are executed in
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void test_nested_bench(char *name, func_t f)

{

int task_id;

double t0, t1;

t0 = getclock();

#ifdef NESTED_PARALLELISM

#pragma omp parallel for schedule(static,1)

#endif

for (task_id = 0; task_id < NTASKS; task_id++) {

(*f)(task_id);

}

t1 = getclock();

<compute global mean time and standard deviation>

<print construct name, elapsed time (t1-t0) and mean values>

}

main ()

{

<compute reference time>

test_nested_bench("PARALLEL", testpr);

test_nested_bench("FOR", testfor);

...

}

Figure 2. Outline of the extended EPCC microbenchmarks for nested parallelism.

parallel, as expected due to the higher number of running threads, the overall execution
time may decrease.

In OpenMP implementations that provide full nested parallelism support, inner levels
spawn more threads than the number of physical processors, which are mostly kernel-level
threads. Thus, measurements exhibit higher variations than in the case of single-level
parallelism. To resolve this issue, we increase the number of internal repetitions for each
microbenchmark, so as to achieve the same confidence levels.

4.2. A Data clustering Application

Except overheads, we evaluate nested parallelism using a full application. For our purpose
we have chosen PCURE (Parallel Clustering Using REpresentatives) [14], the OpenMP
implementation of a well-known hierarchical data clustering algorithm (CURE). Data clus-
tering is one of the fundamental techniques in scientific data analysis and data mining. The
problem of clustering is to partition a data set into a number of segments (called clusters)
that contain similar data. CURE [12] is a very efficient clustering algorithm with respect
to the quality of clusters because it identifies arbitrary-shaped clusters and handles high-
dimensional data. However, its worst-case time complexity is O(n2logn), where n is the
number of data points to be clustered. The OpenMP parallelization of CURE copes with
the quadratic time complexity of the algorithm and allows for efficient clustering of very
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large data sets.

1. Initialization: Compute distances and find nearest neighbors

pairs for all clusters

2. Clustering: Perform hierarchical clustering until the

predefined number of clusters k has been computed

while (number of remaining clusters > k) {

a. Find the pair of clusters with the minimum distance

b. Merge them

i. new_size = size1 + size2

ii. new_centroid = a1*centroid1 + a2*centroid2,

where a1 = size1/new_size and a2 = size2/new_size

iii. find r new representative points

c. Update the nearest neighbors pairs of the clusters

d. Reduce the number of remaining clusters

e. If conditions are satisfied, apply pruning of clusters

}

3. Output the representative points of each cluster

Figure 3. Outline of the CURE data clustering algorithm.

Fig. 3 outlines the main clustering algorithm: since CURE is a hierarchical agglom-
erative algorithm, every data point is initially considered as a separate cluster with one
representative, the point itself. The algorithm initially computes the closest cluster for each
cluster. Next, it starts the agglomerative clustering, merging the closest pair of clusters
until only k clusters remain. According to the merge procedure, the centroid of the new
cluster is the weighted mean of the two merged clusters. Moreover, the new r representative
points are chosen between the 2r points of the two merged clusters.

Fig. 4 presents using pseudocode the most computation demanding routine in the clus-
tering phase, which includes the update of the nearest neighbors (update_nnbs(), lines
1–10). The parallelism in PCURE is expressed with the two parallel nested loops, found at
lines 3 and 17 respectively. For a given cluster with index i, the algorithm finds its closest
cluster among those with smaller index (j < i). Moreover, as the algorithm evolves, the
number of valid clusters gradually decreases. Therefore, the computational cost of loop
iterations cannot be estimated in advance.

The efficiency of PCURE strongly depends on the even distribution of computations
to processors. Due to the highly irregular clustering algorithm, such distribution is not
straightforward though. As shown in [13], the algorithm scales efficiently only if nested
parallelism is exploited.

4.3. Experimental Results

Synchronization overheads Our first experiment uses the extended synchronization
benchmark to measure the overhead incurred by the parallel and for constructs. Both
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1. void update_nnbs(int pair_low, int pair_high)

2. {

3. for (i=pair_low+1; i<npat; i++)

4. {

5. if (entry #i has been invalidated) continue;

6. if (entry #i had neighbor pair_low or pair_high)

7. find_nnb (i, &nnb[i].index, &nnb[i].dist);

8. else if (pair_high < i)

9. if ((dist = compute_distance(pair_high, i))) < nnb_dist[i])

10. nnb[i].index = pair_high, nnb[i].dist = dist;

11. }

12. }

13.

14. void find_nnb(int i, int *index, double *distance)

15. {

16. min_dist = +inf, min_index = -1;

17. for (j=0; j<i; j++)

18. {

19. if (entry #j has been invalidated) continue;

20. if ((dist = compute_distance(i, j)) < min_dist)

21. min_dist = dist, min_index = j;

22. }

23. *index = min_index; *distance = min_dist;

24. }

Figure 4. Pseudocode for the update of the nearest neighbors.

the OMP_NUM_THREADS environment variable and the number of tasks are equal to the
number of physical processors in the system (4). Fig. 5 and 6 present the measured overhead
for both constructs respectively. As the number of active threads increases when nested
parallelism is enabled, the overheads are expected to increase accordingly. We observe,
however, that the parallel construct does not scale well for the Intel, GCC and Omni
compilers. For all three of them, the runtime overhead is an order of magnitude higher
in the case of nested parallelism. On the other hand, both ompi and sunccclearly scale
better and their overheads increase linearly. suncc, however, exhibits higher overheads
than ompi for both single level and nested parallelism. The for construct (Fig. 6) behaves
similarly bad except for the case of GCC, shows significant but not excessive increase; this
is attributed to the platform-specific atomic primitives that GCC uses. Although ompi
does not currently use atomic operations, it manages to deliver the best performance for
both microbenchmarks mainly due to its lower contention between OpenMP threads.

Scheduling overheads In the second experiment, we use the loop scheduling benchmark
to study the efficiency of OpenMP when several independent parallel loops are executed
concurrently. We provide measurements for the dynamic and guided scheduling policies
using their default chunk size, which is equal to one. This chunk size was chosen in order
to measure the highest possible scheduling overhead. As shown in Fig. 7, the overhead of
the dynamic scheduling policy increases substantially for the Intel and Omni compilers and
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Figure 5. Runtime overhead of the OpenMP parallel construct (µsec).

Figure 6. Runtime overhead of the OpenMP for construct (µsec).

decreases for suncc, GCC, and ompi. The scheduling overhead depends strongly on the
mechanism that OpenMP threads use to get the next chunk of loop iterations. Appropriate
use of atomic primitives and processor yielding can significantly reduce thread contention
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Figure 7. Runtime behavior of the dynamic scheduling policy (µsec).

Figure 8. Runtime behavior of the guided scheduling policy (µsec).

during the dynamic assignment of loop iterations. This appears to be the case for the Sun
Studio and GCC compilers, for which the dynamic scheduling overhead decreases when
nested parallelism is exploited. ompi with user-level threading achieves the same goal
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because it is able to assign each independent loop to a team of non-preemptive user-level
OpenMP threads that mainly run on the same virtual processor. The overhead of the
guided scheduling policy, as depicted in Fig. 8, is lower than that of the dynamic policy
and increases for all the OpenMP implementations when nested parallelism is exploited.

Parallel data clustering The last experiment evaluates the runtime support of nested
parallelism running PCURE on a data set that contains 5000 points with 24 features.
The guided scheduling policy is used for both loops of the update procedure. We pro-
vide performance results after 1000 and 4000 clustering steps, depicted in Fig. 9 and 10
respectively. With the exception of ompi, all OpenMP compilers utilize kernel threads.
If OMP_NUM_THREADS equals T , these compilers use T 2 total kernel threads. On the other
hand, ompi initializes its user-level threads library with T virtual processors and creates
T 2 user-level threads. The Intel and Omni compilers perform best when T=2 because the
actual number of kernel threads from both levels of parallelism is equal to the system’s
processor count (4). For T=4, where 16 threads are created in total, the speedup drops
mostly due to the higher threading overhead and the increased memory traffic and con-
tention. For both suncc and GCC, the speedup is improved slightly on 4 threads, although
this improvement declines as the number of steps increases. On the other hand, PCURE
scales well in both experiments for the ompi compiler. Let us note here that PCURE is
a data intensive application, so its scalability is limited by the low memory bandwidth of
the bus-based SMP machine.

Figure 9. Speedups for 1000 steps of the parallel data clustering algorithm.
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Figure 10. Speedups for 4000 steps of the parallel data clustering algorithm.

5. Conclusion

In this chapter we performed an in-depth analysis of nested parallelism in OpenMP. We
examined both what the OpenMP specifications provide to the programmer for controlling
nested parallelism and what the known implementations support. We surveyed commercial
as well as research / experimental systems and categorized them according to the level of
support they offer. After a decade since the first version of the OpenMP specifications came
out, nested parallelism support is still at its infancy. There exist compilation systems that
provide no support at all, but fortunately we found many systems that provide either
partial or full support (i.e. the implementation does not limit dynamically the number of
threads created).

However, we discovered that most implementations have scalability problems when
nested parallelism is enabled and the number of threads increases beyond the number
of available processors. Through specially designed microbenchmarks it was shown that
the overheads increase dramatically even when moving merely to the second nesting level,
in all but the ompi compiler. In order to see the effect on the overall performance, a
hierarchical data clustering application was also employed. The overheads manifested
themselves as significantly lower-than-optimal attainable speedups, which got worse as the
number of threads increased. It is clear that there are several design issues and performance
limitations related to nested parallelism support that implementations have to address in
an efficient way. The most important seems to be the kernel-level threading model which
all but the ompi compiler have adopted.

Last but not least, OpenMP still has a long way to go with respect to nested parallelism.
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A number of issues in the specifications have to be clarified and a richer functional API
for the application programmers must be provided.
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