
The original publication is available at ieeexplore.ieee.com 1

A Runtime Library for Platform-Independent Task Parallelism ∗

Panagiotis E. Hadjidoukas Evaggelos Lappas Vassilios V. Dimakopoulos
Department of Computer Science

University of Ioannina, Ioannina, Greece, GR-45110
{phadjido,elappas,dimako}@cs.uoi.gr

Abstract

With the increasing diversity of computing systems and
the rapid performance improvement of commodity hard-
ware, heterogeneous clusters become the dominant plat-
form for low-cost, high-performance computing. Grid-
enabled and heterogeneous implementations of MPI estab-
lish it as the de facto programming model for these envi-
ronments. On the other hand, task parallelism provides a
natural way for exploiting their hierarchical architecture.
This hierarchy has been further extended with the advent
of general-purpose GPU devices. In this paper we present
the implementation of an MPI-based task library for het-
erogeneous and GPU clusters. The library offers an intu-
itive programming interface for multilevel task parallelism
with transparent data management and load balancing. We
discuss design and implementation issues regarding hetero-
geneity support and report performance results on hetero-
geneous cluster computing environments.

1. Introduction

With the advent of multi- and many-core technology,
heterogeneous parallel and distributed computing systems
emerge as the primary low-cost and powerful platform for
high-performance applications. As commodity nodes im-
prove their performance and expand their architecture di-
versity, not only the computing power but also the hetero-
geneity of these systems, in terms of hardware and software,
increases. Meanwhile, new programming challenges for ex-
ploiting the hierarchical structure of these systems arise.

Task-based parallelism is very well suited to heteroge-
neous computing. In the (limited) form of the master-
worker execution model, it has been applied on a wide class
of applications and computing platforms. The latter range
from multiprocessors and clusters of them to computational
grids, as well as many-core architectures like (GP)GPUs.

∗This work was supported in part by the Greek Republic and the Euro-
pean Commission through the Artemisia SMECY project (grant 100230).

Moreover, MPI appears to be the de facto programming
model for these platforms, considering the need for explicit
communication between nodes and the availability of grid-
enabled / heterogeneous MPI implementations.

There exists a number of programming models and run-
time systems that provide support for task parallelism,
but they have been traditionally platform-dependent. On
shared-memory platforms, well known examples include
Cilk [1] and OPENMP V.3.0 [2] which introduced the ‘task’
construct. On distributed-memory machines, a common ap-
proach combines data with task parallelism in the message-
passing programming model (e.g. HPF/MPI [3]). Task Pool
Teams [4] and Tlib [5] are runtime libraries that support the
coordination of hierarchically structured tasks, extending
the SPMD execution model to MPMD, where subsets of pro-
cessors execute different data-parallel tasks. ADLB (Asyn-
chronous Dynamic Load Balancing) is an MPI library for
master-worker programming; worker processes put and get
units of work into a shared queue without interacting with a
master through explicit calls [6]. ADLB, does not currently
exploit multithreading itself and requires hard partitioning
of MPI processes, with the number of servers and workers
explicitly set by the user.

The above systems assume mostly homogeneous sys-
tems where nodes are of similar architecture. Supporting
heterogeneous hosts in distributed-memory settings is yet
another important issue that has to be dealt with. Some
MPI implementations have been presented for heteroge-
neous distributed-memory systems, such as MPICH-G2 [7]
and OpenMPI [8]. These implementations adopt various
strategies to address issues that concern network, processor
and runtime environment heterogeneity [9]. Virtualization
technology offers hardware independence and a straightfor-
ward solution for handling heterogeneous clusters. Setup of
virtualization, however, requires root privileges, while re-
cent studies have shown that virtualized multicore machines
may suffer from significant performance degradation com-
pared to native execution, both on distributed and shared-
memory parallel computing environments [10, 11]. Simi-
larly, Java solves the heterogeneity problem at the cost of

http://dx.doi.org/10.1109/PDP.2012.89

possible performance loss. Satin [12] is a Cilk-like exten-
sion to Java for divide-and-conquer applications targeting
mostly wide-area grids. Satin requires a byte code rewrite
and does not currently exploit the shared memory present in
SMP/multi-core nodes.

Finally, GPUs present yet another architectural dimen-
sion. GPU-specific support for tasking has been provided by
systems like StarPU [13] and GPUSs [14]. For GPU clus-
ters, the most common programming approach is the hy-
brid MPI + GPU (CUDA or OPENCL) model. Research ef-
forts that try to provide a unified programming platform in-
clude MGP [15], an implementation of OPENCL on clusters,
Pleiad [16], a Java-based middleware that offers a shared-
memory abstraction, and the extension of UPC for GPU
clusters [17].

In this work we present TORC, a task-parallel library,
for heterogeneous cluster computing platforms. TORC pro-
vides ease of programming and transparent load balancing
to master-worker applications without requiring any inter-
action with the low-level message passing primitives. It
also supports integration of the tasking model into tradi-
tional MPI programs, allowing one or more MPI processes
to independently spawn tasks, and dynamic switching be-
tween SPMD and master-worker execution. To support het-
erogeneity on distributed memory systems we had to deal
with design and implementation issues in TORC that cannot
be directly addressed by a heterogeneous MPI library. Fur-
thermore, we present an approach for dynamically offload-
ing TORC tasks to the available GPUs of cluster nodes. Ex-
perimental results on several heterogeneous clusters demon-
strate the ability of TORC to effectively exploit task paral-
lelism and the seamless integration of MPI, OPENMP and
OPENCL into a common programming and runtime envi-
ronment.

The rest of this paper is organized as follows: Section 2
gives a brief overview of the TORC tasking library. In Sec-
tion 3 we discuss issues related to heterogeneity at cluster
level, while in Section 4 we describe the support of GPU
computing. Experimental evaluation is reported in Section
5. Finally, we conclude in Section 6.

2. Overview of TORC

TORC is a software library that provides C and Fortran
interfaces for programming task-based parallel programs to
be executed unaltered on both shared and distributed mem-
ory platforms. It takes advantage of and extends MPI: a
single TORC application consists of multiple MPI processes
running on cluster nodes, having one or more kernel-level
POSIX threads that share the process memory. TORC imple-
ments a two-level thread architecture to support the tasking
model. Each kernel thread is a worker that continuously
dispatches and executes ready-to-run tasks; the latter are in-

#include <math.h>
#include <torc.h>

void callback(int a, double *res) {
printf("sqrt(%d)=%lf\n", a, *res);

}

void taskf(int a, double *res) {

*res = sqrt(a);
}

void main(int argc, char *argv[]) {
int i, double y[10];

torc_init(argc, argv, MODE_MW);
for (i=0; i<10; i++) {

torc_task(-1, taskf, callback, 2,
1, TORC_INT, CALL_BY_VAL,
1, TORC_DOUBLE, CALL_BY_RES,
i, &y[i]);

}
torc_waitall();

}

Figure 1. A TORC program with callback

stantiated with user-level threads and submitted for execu-
tion to a set of ready queues. Due to the decoupling of tasks
and execution vehicles, arbitrary nesting of tasks is inher-
ently supported and any child task can become a master.

TORC tasks have a parent-child relationship; they are as-
sociated with the process (parent node) they were created on
and can be executed either locally or remotely. Internally,
each task is represented with a data structure, called task de-
scriptor, that encapsulates all the information of a task. In
the task creation routine (torc task()), the programmer spec-
ifies the task function and its arguments, providing the (MPI-
like) type, size and intent attribute for each argument. Possi-
ble values of this attribute are CALL BY {VAL,RES,REF}
used similarly to the IN, OUT and INOUT intent attributes
of Fortran 90. For instance, CALL BY REF represents data
that are sent with the task descriptor and returned as a result
in the parent node’s address space.

All data transfers in TORC are performed with explicit
messaging: a kernel-level server thread in each MPI process
is responsible for the remote queue management and the
transparent to the user and asynchronous data movement.
Besides MPI’s send/recv interface, TORC is open to other
forms of data management/fetching, such as MPI-2’s one-
side communications.

Fig. 1 presents a complete master-worker TORC ap-
plication. We observe the complete absence of ex-
plicit messaging and the usage of three TORC routines
(torc {init,task,waitall}()), which initialize the library, cre-
ate and join tasks respectively. After initialization, there is
only one instance of the main routine that runs as the pri-
mary application task on the process with rank 0, while all
other processes block waiting for work. When a task fin-
ishes, its result is transparently stored back to the appropri-
ate place in the array and a user-supplied callback routine,
which prints that result, is submitted for execution on the

parent process. The spawned tasks of the example code are
distributed cyclically across the available workers. How-
ever, the programmer may specify the target process/worker
in the task creation routine. As task stealing is inherently
supported by TORC, the programmer has only to decide
about the task distribution scheme.

An important feature of TORC is the support of dynamic
switching between the master-worker and the SPMD execu-
tion model. MPI processes are usually launched and exe-
cuted according to the SPMD execution model. The pro-
grammer explicitly specifies in torc init() the desired exe-
cution model (MODE_MW, MODE_SPMD) that a parallel ap-
plication will follow immediately after the library initial-
ization. For the master-worker model, only one of the MPI
processes executes the main routine and the rest of them
become workers. At runtime, the application can switch
its execution model to SPMD by spawning and distributing
a dedicated task to each process. This approach enables
the integration of existing SPMD MPI codes into a master-
worker application. Furthermore, TORC allows the integra-
tion of the tasking model into legacy MPI applications [18].

On multi-core SMPs, TORC operates as a two-level
threading library that seamlessly exploits intra-node task
parallelism with multiple worker threads. Due to its design,
TORC implements a tasking framework that integrates not
only MPI but OPENMP as well. The intra-node parallelism
of a task function can be expressed with OPENMP direc-
tives, in accordance to the hybrid MPI + OPENMP program-
ming model. The OPENMP compiler, however, must support
interoperability between OPENMP and independent POSIX
threads. Moreover, caution is needed because the combina-
tion of TORC workers and OPENMP threads can easily over-
subscribe the system.

3. Supporting heterogeneous clusters

Built on top of the POSIX and MPI interfaces, TORC is
highly portable across operating systems, processors and
networks. Among MPI implementations, Open MPI is the
most active one and provides internal and transparent sup-
port for processor and network heterogeneity, allows for dif-
ferent operating systems and has additional attractive fea-
tures, such as thread-safety [8, 9]. Therefore, the extension
of TORC on heterogeneous clusters is based on Open MPI.

Supporting heterogeneity in TORC is a multidimensional
problem. The processors of a heterogeneous cluster can
differ in data type representation, endianness and memory
alignment rules. Because Open MPI does not currently sup-
port conversion between data types of different sizes, we
consider systems with the same (32-bit) data model, regard-
less of the operating system and processor type. In the fol-
lowing paragraphs, we describe how we addressed issues in
the design and implementation of TORC that concern het-

erogeneity support. These issues stem from (a) the dif-
ferent memory alignment between the members of a data
structure, as imposed by the processor architecture and the
compiler, (b) the different ordering in data representation,
known as machine endianness, and (c) the different virtual
address space of MPI processes due to the software config-
uration of cluster nodes.

Memory Alignment. Due to memory alignment rules,
it is possible for the data structure of the task descriptor to
differ in size and/or ordering of structure members in two
different cluster nodes. As the descriptor is sent from one
node to another, whenever a task is submitted remotely, it is
important that all cluster nodes have the same representation
of the descriptor. For this reason, we place the structure
members of the descriptor appropriately so as to prevent any
alignment enforced by the compiler. In cases where this is
not possible, we use explicit padding.

Machine Endianness. If two communicating nodes
do not have the same endianness, a byte reordering is re-
quired for the transferred data. For any data type other
than MPI BYTE, this procedure is performed transparently
by the heterogeneous MPI library for explicitly sent data.
This feature allows for a straightforward extension of TORC
on heterogeneous clusters, without code modifications for
managing task arguments. For the task descriptor, how-
ever, we do not rely on MPI. So, instead of creating a struct
datatype, we transfer the descriptor as a sequence of bytes;
for communicating nodes of different endianness, we apply
explicit byte swapping for every member of the descriptor
at the receiver node.

Virtual Addresses. In TORC, a task corresponds to a
function submitted for execution on a cluster node. The
function is specified in the task creation routine, issued on
the parent node. The function, however, can be located at
a different virtual address on the target node. This may oc-
cur for systems with different software configurations (e.g.
operating system) where the running MPI processes do not
have identical address and memory spaces. In order to solve
this problem, TORC uses a mechanism that assigns a glob-
ally unique number to each task function. Each MPI process
maintains a table that matches a function’s local address to
the assigned number. This number, instead of the address,
is stored in the task descriptor and when a worker is about to
start executing a task, it performs the reverse matching pro-
cedure. The above mechanism introduces an extension in
the TORC API. In particular, it requires the programmer to
call a registration routine for every task function that may be
executed remotely. This must be done by all MPI processes
before calling the torc init() function.

A similar issue appears in data broadcasting. Several
master-worker applications may have global data that is ini-
tialized by the master and then broadcast to the workers.
The torc bcast() routine allows any task to broadcast global

data to all MPI processes. Data broadcasting avoids unnec-
essary data transfers and benefits applications that other-
wise would need to send the data with every task. Suppose
that the master modifies a global array and then broadcasts
it to slaves. To perform this, the master must specify the
address of the array in torc bcast(). As this address may dif-
fer between nodes, a registration procedure is required for
global data too. This case slightly differs from that of task
functions, because we need to provide matchings for any
valid position within the global memory segment. There-
fore, the programmer must register not only the address but
also the size of the memory segment, allowing broadcast of
any part of the registered memory.

4. Supporting GPU computing

General purpose graphics processing units offer a
cost-effective many-core architecture for high-performance
computing. OpenCL [19] is the programming framework
for developing kernels (functions) that target GPUs. Typi-
cally, the programmer copies kernel arguments to the device
memory explicitly, executes the kernel with a number of
work-items and finally copies the results back to host mem-
ory. As only one kernel can be running on most GPU de-
vices, task parallelism can be exploited with multiple GPUs
and processors. Moreover, a common practice is to combine
MPI with OPENCL for programming GPU clusters.

By integrating GPU computing into TORC, we implement
a programming and runtime environment for adaptive task
parallelism on GPU clusters. The programmer can use the
TORC API to spawn and distribute tasks to cluster nodes;
the task function can either target a processor core or issue
a kernel to a GPU. To enable the concurrent utilization of all
available processing units (CPU, GPU) TORC must be initial-
ized with at least two worker threads, because the OPENCL
kernel execution corresponds to a blocking call that keeps a
worker busy.

To improve the programmability and adaptivity features
of TORC, we can take advantage of the fact that a CPU ver-
sion of OPENCL kernels can (and should) be always avail-
able. Taking also into account that OPENCL’s language is
based on C99, in many cases a few modifications are ade-
quate for compiling a kernel code for CPU execution. In ad-
dition, both the CPU function and the OPENCL kernel may
share the same arguments.

According to the above, a TORC task can dynamically
decide if it will be offloaded to the GPU or run on a CPU
core, depending on whether an OPENCL kernel is already
running. Furthermore, as task arguments are mapped to the
kernel arguments and their usage has been specified with the
intent attributes during task creation, the programmer can
optionally let TORC handle all the required data transfers
between the host and the GPU memory.

void taskf(<arguments>) {
if (gpu_getaccess()) {

f_gpu(<arguments>);
}
else {

f_cpu(<arguments>);
}

}

main(int argc, char **argv) {
gpu_init();
torc_init(argc, argv, MODE_MW);
...
torc_create(-1, taskf, <arguments>);
torc_waitall();
...

}

Figure 2. GPU computing and TORC

An outline of the approach is depicted in Fig. 2. The gpu-
init() routine, which is called by all cluster nodes, prepares

the GPU environment, builds the OpenCL kernel and cre-
ates the execution context. With gpu getaccess(), a worker
thread requests exclusive access to the GPU device; in case
of success, it proceeds with the execution of the OPENCL
kernel, otherwise it calls the CPU version of the kernel.

5. Performance experiments

5.1. Heterogeneous single-core platform

We conducted our experiments on a portion of our de-
partmental heterogeneous cluster, composed of 20 single-
processor nodes. The configuration includes three sets of
homogeneous nodes: the first set is composed of 8 SUN Ul-
tra20 workstations with an AMD Opteron 1.8GHz CPU and
1GB RAM, running Linux 2.6.18 with GNU gcc 4.1.2. The
second set includes 4 SUN Ultra25 nodes (UltraSPARC-
IIIi 1.34GHz CPU, 1GB RAM), while the third one has
8 Sun Blade100 workstations (UltraSPARC-IIe 502MHz
CPU, 512MB RAM). All nodes are connected to the same
Fast Ethernet switch. Both Ultra25 and Blade100 nodes run
Solaris 9 with GNU gcc 3.4.6. The Open MPI version we
used was 1.4.2.

We provide experimental results for three task-parallel
applications: NAS EP, PMCMC and Mandelbrot. The loop-
level parallelism of the Embarrassingly Parallel (EP) bench-
mark is statically scheduled to a number of tasks. The task
results are transparently accumulated through a reduction
(+) operation provided by TORC. We run EP for 229 random
numbers and 256 tasks. PMCMC implements a Markov
Chain Monte Carlo algorithm [6]. Each task is assigned a
seed and performs a large number of Markov Chain com-
putations. For PMCMC, 1024 tasks are spawned, each
performing 107 iterations. Finally, Mandelbrot (adapted
from LAM/MPI) creates a single task for each image block
and uses a callback routine to copy the processed block to
the image region. The application processes an image of

Table 1. Execution Times and Power Weights
(PWs) for the cluster nodes

NAS EP PMCMC MAND
Time (s) PW Time (s) PW Time (s) PW

Ultra20 509 1.00 1226 1.00 723 1.00
Ultra25 858 0.59 8070 0.15 6150 0.12

Blade100 1340 0.38 18800 0.07 11800 0.06

8192x8192 pixels with maximum 5000 iterations for each
pixel and block size 128x128, spawning thus 4096 tasks.

To evaluate application performance on the heteroge-
neous cluster, we use a performance model introduced
in [20]. The model is based on the Power Weight (PW)
metric [21], which is defined as the amount of work a ma-
chine (node) can complete in unit time. Table 1 depicts the
execution time of the applications on a single node of each
cluster and the corresponding PWs. We observe that the Ul-
tra20 cluster provides the lowest execution time and there-
fore, it is taken as reference in the calculation of PW for the
rest of the clusters.

Figs. 3 to 5 depict the efficiency obtained for the three
applications. We provide results for the three homoge-
neous sub-clusters (Ultra20, Ultra25 and Blade100), a het-
erogeneous cluster (Ultras) consisting of equal numbers of
Ultra20 and Ultra25 nodes and, finally, the heterogeneous
cluster (Coupled) of all systems. In the latter case, we have
set the number of Ultra20 nodes to be twice the number of
Ultra25 and Blade100 nodes. A summary of the obtained
efficiency on the Coupled cluster is depicted in Fig. 6.

The experimental results demonstrate the effectiveness
of TORC for heterogeneous computing: the obtained ef-
ficiency is higher than 90% for almost all configurations.
For NAS EP (Fig. 3), the lower performance values for the
Coupled cluster are attributed to load imbalance, imposed
by the varying computational power of nodes and the rela-
tively small number of tasks (256). In Fig. 4, we observe
that PMCMC exhibits higher efficiency; this is mostly at-
tributed to its larger number of tasks. Mandelbrot scales
well too, despite the inherent load imbalance of the ap-
plication and the inclusion of all callbacks completion in
the measured execution time. Other factors that may af-
fect parallel performance and limit efficiency are the com-
munication overheads because of the low-cost communica-
tion channel and the contention between the worker and the
server thread within each process. The task stealing mech-
anism of TORC is utilized in all the experiments. If a ho-
mogeneous cluster is used, tasks are distributed cyclically
across the nodes. For the heterogeneous configurations, we
adopt a hybrid task distribution scheme: the primary ap-
plication task always runs on a node of the most power-
ful cluster and spawned tasks are submitted only to nodes
of that cluster too. Therefore, low-performance nodes only
issue and never serve task stealing requests. To reduce net-

Figure 3. Efficiency of NAS EP

Figure 4. Efficiency of PMCMC

Figure 5. Efficiency of Mandelbrot

Figure 6. Efficiency on the Coupled cluster

Table 2. Execution Times and PWs for the
processing cores of the Linux cluster nodes

NAS EP PMCMC MAND
Time (s) PW Time (s) PW Time (s) PW

HP6000Q 1557 1.00 1347 0.91 4113 0.97
HP6000D 1666 0.93 1567 0.78 4402 0.91
Ultra20D 2839 0.55 1456 0.84 4004 1.00
Ultra20S 4096 0.38 1226 1.00 5818 0.69

work traffic, an idle worker first searches for task at the node
where it had previously found one. An in-depth study and
evaluation of task scheduling is left for future work.

5.2. Heterogeneous Linux cluster

In order to demonstrate the scalability of TORC on a
larger number of cores, we utilize a heterogeneous Linux
cluster that consists of the following systems (in parenthesis
the codename used for convenience, the last letter denoting
the number of cores):

• 13 HP6000 Pro PCs with an Intel Core 2 Quad Q9400
2.6GHz CPU and 2GB RAM (HP6000Q).

• 14 HP6000 Pro PCs with a Dual-core Intel Celeron
E3300 2.5GHz CPU and 3GB RAM (HP6000D).

• 6 SUN Ultra20 workstations with an Dual-Core AMD
Opteron 2.6GHz CPU and 1GB RAM (Ultra20D).

• 8 SUN Ultra20 workstations with an AMD Opteron
1.8GHz CPU and 1GB RAM (Ultra20S).

The HP6000 PCs are running Linux 2.6.32 with GNU
gcc 4.4.5, while the Ultra20 workstations Linux 2.6.18 with
GNU gcc 4.1.2. We conducted experiments with the same
set of applications as before but for larger problem size for
EP and Mandelbrot. In particular, we run EP for 232 random
numbers and 1024 tasks and Mandelbrot for 16384x16384
image size, block size 128x128 and 16384 total tasks. The
execution times of the three applications on a single pro-
cessing core of each node and the corresponding Power
Weights are depicted in Table 2.

In Table 3 we show representative experimental results
on two Linux sub-clusters: the first cluster (HP) consists of
13 HP6000Q and 14 HP6000D nodes resulting in 27 nodes
and 80 processing cores in total, while the second one (HP-
Sun) uses 8 HP6000Q, 8 HP6000D, 6 Ultra20D and 8 Ul-
tra20S nodes (30 nodes, 68 processing cores). A single MPI
process is deployed on each cluster node, with the number
of worker thread set equal to the number of processing cores
of that node. We observe that the results accord with those
attained on the heterogeneous single-core cluster, with the
efficiency keeping above 79%, despite the low-performance
interconnection network, a small serial fraction in the appli-
cation for spawning and joining parallelism and the load im-
balance that occurs when the number of tasks is not evenly
divided by the number of processors.

Table 3. Performance on the Linux cluster
Application Cluster Cores Time (s) Speedup Efficiency

EP HP 80 22.48 69.28 88.77%
EP HP-Sun 68 33.40 46.62 83.50%

PMCMC HP 80 21.69 56.52 81.73%
PMCMC HP-Sun 68 25.68 47.74 79.14%
MAND HP 80 62.84 63.72 83.93%
MAND HP-Sun 68 80.85 49.52 80.03%

5.3. Heterogeneous GPU cluster

We demonstrate the functionality of TORC on a GPU
cluster with a nonlinear global optimization application that
uses the algorithm of Hooke and Jeeves. The code was
adapted from Netlib [22], modified to use floats instead of
doubles in order to run as an OPENCL kernel on the NVIDIA
GPUs we have access to. The Hooke application applies
the algorithm to a number of randomly chosen multidimen-
sional points, searching for the minimum of the Rastrigin
function.

We performed our experiments on a dual-node multicore
GPU cluster. The first node (called i7-930) is equipped with
an Intel Core i7 930 Quad-Core processor at 2.67GHz, 4GB
RAM and an NVIDIA Geforce GT 220 GPU (6x8 cores,
1GB memory). The second node (i7-920) has a similar pro-
cessor (Intel Core i7 930 at 2.8GHz), 4GB RAM and an
NVIDIA GeForce 9400 GT GPU (2x8 cores, 1GB mem-
ory). Both nodes are running Linux 2.6.32 with GNU gcc
4.4.3 and the NVIDIA CUDA toolkit 4.0.1 installed. We
apply the Hooke algorithm on 256K 8-dimensional points,
processing them in chunks of 1024 points. Our goal is to
demonstrate our support of task parallelism on GPU clusters
rather than to provide a highly-optimized GPU version of
the application.

An outline of the parallelization strategy is depicted in
Fig. 7. The 256 tasks are distributed cyclically to the TORC
workers of the two MPI processes, with task stealing en-
abled. If a task succeeds to get access to the GPU it runs the
OPENCL kernel, otherwise it proceeds with the CPU ver-
sion of the Hooke algorithm. The execution of the kernel is
performed with the gpu runkernel() function, which copies
the input task arguments to the GPU memory, issues the ker-
nel with global work-items equal to the number of points
(1024) and work-group size equal to 32 and finally copies
back the results.

Table 4 shows the execution time of the application on a
single core of the i7 processors and the two NVIDIA GPUs
and the corresponding PWs. For the particular problem pa-
rameters (number of points and chunk size), the GT 220
GPU delivers the best performance and therefore PWs are
computed against the execution time on that device.

Figures 8–10 illustrate the execution time of the Hooke
application on three different hardware configurations of the

#define POINTS (256*1024)
#define VARS (8)

void hooke_drv(float data[], float res[], int npts) {
if (gpu_getaccess()) {

gpu_runkernel(npts);
}
else {

hooke_cpu(data, res, npts);
}

}

main(int argc, char **argv) {
gpu_init();
torc_init(argc, argv, MODE_MS);
...
stride = 1024;
for (ipoint = 0; ipoint < POINTS; ipoint+=stride) {

torc_create(-1, hooke_drv, 3,
stride*VARS, TORC_FLOAT, CALL_BY_VAL,
stride*VARS, TORC_FLOAT, CALL_BY_RES,
1, TORC_INT, CALL_BY_VAL,
&data[ipoint*VARS], &res[ipoint*VARS], stride);

}
torc_waitall();
...

}

Figure 7. Exploitation of CPU/GPU task paral-
lelism in the global optimization application

GPU cluster. In the first experiment (Fig. 8), we evaluate
the parallel performance of the application on the multi-
core systems. We observe that the application scales lin-
early when 4 TORC workers are used, while the maximum
speedup is 5.48, obtained for 8 workers that fully utilize the
4 cores/8 threads of the Quad-core i7 processors.

The second experiment demonstrates the support of
TORC for concurrent GPU/CPU computing: one of the
TORC workers always offloads tasks to the GPU while the
rest of them run the CPU version of the Hooke algorithm.
In Fig. 9, we observe that the execution time of the Hooke
application is significantly lower compared to that of pure
multicore execution and, moreover, decreases with the num-
ber of workers. On 4 cores (workers), the PW-based effi-
ciency for both systems is approximately 95%.

Fig. 10 shows the performance of TORC on the dual-
node cluster, using an equal number of TORC workers at
each node. We provide results running Hooke only on the
CPU cores and utilizing the available GPU and textsccpu
cores at the same time. The latter case demonstrates the full
functionality of TORC: a single application binary is able
to dynamically adapt its execution to the underlying paral-
lel hardware. For example, on 8 cores (4 workers per node),
the parallel efficiency is 91% and the 256 tasks are executed
as follows: 141 on the i7-930 node (41 on the 3 cores and
100 on the GT 220 GPU) and 115 on the i7-920 node (40 on
the 3 cores and 75 on the 9400 GT GPU).

The smallest application execution time for each exper-
iment is depicted in Table 5, verifying the effective utiliza-
tion of all the available processing units of the multi-core
GPU cluster.

Table 4. Execution Times and PWs for the
processing units of the GPU cluster

Time (s) PW
i7-930 core 112.76 0.15
GT 220 GPU 16.36 1.00
i7-920 core 118.25 0.14

9400 GT GPU 21.77 0.75

Table 5. Minimum execution times of Hooke
System Processing Units Time (s)
i7-930 8 threads 20.57

i7-930 + GT 220 8 threads / 1 GPU 9.67
i7-920 8 threads 21.71

i7-920 + 9400 GT 8 threads / 1 GPU 11.92
i7-930 + i7-920 16 threads 10.89

i7-930 + GT 220 + i7-920 + 9400 GT 16 threads / 2 GPUs 5.62

Lastly, we experiment with the execution of intra-node
parallelism with OPENMP, as the GNU gcc compiler sup-
ports the required interoperability with POSIX threads.
Specifically, the 1024 loop iterations of a CPU-based Hooke
algorithm, included in a single TORC task, are distributed
to a team of OPENMP threads with a parallel for
pragma. To avoid oversubscription, the application runs
with 2 TORC workers; one interacts with the GPU while
the other becomes the master of the team that executes
the OPENMP parallel version of the Hooke algorithm. For
the particular experiment, the difference in the performance
between the two approaches (exclusive TORC workers vs
OPENMP threads) is negligible. For instance, the execution
time of the application with 2 TORC workers and 7 OPENMP
threads on the i7-930 + GT 220 configuration is 9.72 sec-
onds, which is very close to the 9.67 seconds when OPENMP
is disabled and 8 TORC workers are used (second entry in
Table 5).

6. Discussion

We presented the implementation of TORC, an infrastruc-
ture for programming and executing task-based MPI paral-
lelism, on clusters of heterogeneous nodes and GPUs. Sev-
eral issues concerning heterogeneity support in the runtime
library were discussed. An adaptive scheme for CPU/GPU
computing was also introduced. We evaluated TORC on a
variety of parallel computing platforms, including homo-
geneous and heterogeneous clusters, equipped with multi-
core processors and GPU devices. The experimental results
demonstrate the successful and efficient support of adap-
tive task parallelism on such platforms, within a common
programming and runtime infrastructure. Our future plans
include the study of load balancing policies and the support
of fault-tolerance.

Figure 8. CPU performance of Hooke

Figure 9. CPU/GPU performance of Hooke

Figure 10. Cluster performance of Hooke

References

[1] R.D. Blumofe et al. Cilk: An efficient multithreaded runtime
system. J. Parallel Distrib. Comput., 37(1), 1996.

[2] OpenMP Architecture Review Board, OpenMP Application
Program Interface, V.3.0, May 2008

[3] I. Foster et al. A library-based approach to task parallelism in
a data-parallel language. J. Parallel Distrib. Comput., 45(2),
pp. 148-158, 1997.

[4] J. Hippold, G. Runger. Task pool teams: A hybrid program-
ming environment for irregular algorithms on SMP clusters.
Concurr. Comput.: Pract. Exp., 18(12) pp. 1575-1594, 2006.

[5] T. Rauber and G. Runger. Tlib - A library to support pro-
gramming with hierarchical multi-processor tasks. J. Paral-
lel Distrib. Comput., 65(3), pp. 347-360, 2005.

[6] ADLB library, URL: http://www.cs.mtsu.edu/∼rbutler/adlb/
[7] N. Karonis, B. Tonnen, and I. Foster. MPICH-G2: a grid-

enabled implementation of the message passing interface. J.
Parallel Distr. Comput., 63(5), pp. 551-563, 2003.

[8] R.L. Graham et al. Open MPI: A High-Performance, Het-
erogeneous MPI. In 5th Intl. Workshop on Algorithms, Mod-
els and Tools for Parallel Computing on Heterogeneous Net-
works, Barcelona, Spain, 2006.

[9] Y-H. Jiang, Q.L. Zhao, Y.T. Lu, and X.J. Yang. Hetero-
geneity issues and supports in MPI implementations: An
overview. In 8th Intl. Conf. on Grid and Cooperative Com-
puting, Lanzhou, Gansu, China, 2009.

[10] J. Han et al. The effect of multi-core on HPC applications in
virtualized systems. In 5th Workshop on Virtualization and
High-Performance Cloud Comput., Naples, Italy, 2010.

[11] J. Tao, K. Furlinger, and H. Marten. Performance evaluation
of OpenMP applications on virtualized multicore machines.
In 7th Intl. Workshop on OpenMP (IWOMP 2011), Chicago,
IL, USA, 2011.

[12] R. van Nieupoort, J. Massen, T. Kielmann, H.E. Bal. Satin:
simple and efficient java-based Grid programming. In Work-
shop on Adaptive Grid Midlleware (AGridM 2003), Antibes
Juan-les-Pins, France, 2003.

[13] C. Augonnet, S. Thibault, R. Namyst and P.-A. Wacrenier.
StarPU: A unified platform for task scheduling on heteroge-
neous multicore architectures. Concurrency and Computa-
tion: Practice and Experience, 23(2), pp. 187-198, 2011.

[14] E. Ayguade et al. An extension of the StarSs programming
model for platforms with multiple GPUs. In 15th Intl. Euro-
Par Conference, Delft, The Netherlands, 2009.

[15] A. Barak, T. Ben-Nun, E. Levy, and A. Shiloh. A pack-
age for OpenCL based heterogeneous computing on clusters
with many GPU devices. In 2010 IEEE International Conf.
on Cluster Computing Workshops and Posters, Heraklion,
Crete, Greece, 2010.

[16] K. I. Karantasis and E. D. Polychronoulos. Programming
GPU clusters with shared memory abstraction in software.
In 19th Intl. Euromicro Conf. on Parallel, Distributed and
Network-Based Processing, Ayia Napa, Cyprus, 2011.

[17] L. Chen et al., Unified Parallel C for GPU clusters: Language
extensions and compiler implementation. In 23rd Intl. Work-
shop on Languages and Compilers for Parallel Computing
(LCPC 2010), Houston, TX, USA, 2010.

[18] P.E. Hadjidoukas, C. Voglis, V.V. Dimakopoulos, I.E. La-
garis, and D.G. Papageorgiou. High-performance numerical
optimization on multicore clusters. In 17th Intl. Euro-Par
Conf., Bordeaux, France, 2011.

[19] Khronos Group, The OpenCL specification, 2011.
[20] J. Al-Jaroodi et al. Modeling parallel applications perfor-

mance on heterogeneous systems. In Intl. Parallel and Distr.
Processing Symp. (IPDPS’03), Nice, France, 2003.

[21] X. Zhang, and Y. Yan. Modeling and characterizing parallel
computing performance on heterogeneous networks of work-
stations. In 7th IEEE Symposium on Parallel and Distr. Pro-
cessing (SPDPS’95), San Antonio, TX, USA, 1995.

[22] NetLib Repository, URL: http://www.netlib.org/opt/

	. Introduction
	. Overview of TORC
	. Supporting heterogeneous clusters
	. Supporting GPU computing
	. Performance experiments
	. Heterogeneous single-core platform
	. Heterogeneous Linux cluster
	. Heterogeneous GPU cluster

	. Discussion

