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Abstract

Probabilistic flooding has been proposed as a means of reducing the exces-
sive message overheads induced by plain flooding in unstructured peer-to-peer
network search. We propose here Advanced Probabilistic Flooding (apf), a
novel strategy which operates differently from other known strategies. In par-
ticular, the decision of a node to propagate a message (or not) is based on
both the popularity of resources and the hop distance from the node that ini-
tiated the query. The latter is used to estimate the number of nodes reached
by the query message. Based on these parameters we adjust the forwarding
probability at the time a node receives the query message so as to reduce the
duplicate message overhead while maintaining a high probability of query
success. The primary goal of our approach is to minimize the cost of search
associated with excessive message transmissions. Our claims are supported
by detailed experiments in various network topologies.

1 Introduction

Locating a desired resource or searching is a key challenge for a wide range of
complex networks including the internet, social networks, biological networks and
peer-to-peer (p2p) networks [29]. Here we focus on p2p networks, which can be
categorized into two broad classes structured and unstructured. Lv et al [22] clas-
sifies them in centralized, decentralized structured, and decentralized unstructured
while Park et al [28] further distinguishes unstructured p2p systems as central-
ized unstructured, hybrid unstructured and decentralized (or pure) unstructured.
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Search in centralized networks utilizes a central directory while decentralized struc-
tured ones provide strict rules for data placement and resource discovery. Hybrid
p2p topologies support both centralized (in the form of e.g. super nodes) and de-
centralized (access and exchange resources) organization and search functionality.
Decentralized unstructured systems have arbitrary network topologies, resource
placement and search. In this work, we concentrate on decentralized unstructured
or simply unstructured networks.

Unstructured peer-to-peer (p2p) networks consist of a large population of net-
worked computers that offer resources and operate in a fully decentralized manner.
Such systems are usually quite large and highly dynamic and each node (or com-
puter) has only information for a small subset of the other participating nodes.
A key challenge is that of locating a desired resource. In the absence of informa-
tion about node and resource placement, these systems use mainly flooding and
its variants to provide search facilities. In flooding, the node (peer) that initiates
the search sends a query message to all its neighbors. Any neighbor that does not
know about the resource propagates the message to all its neighbors, and so on,
until the resource is discovered or some termination conditions are reached.

Although flooding is a fundamental strategy for resource discovery in several
types of networks, it is responsible for overloading the network with a large number
of messages [9]. By overloading we mean the unnecessary query message transmis-
sions that occur from many rebroadcasts, particularly in highly interconnected
networks. These redundant retransmissions, named duplicate messages, are mul-
tiple copies of the same query that arrive to a node by following different paths.
Studies in various contexts [26, 22] demonstrate the seriousness of the problem and
highlight that rebroadcasts should be used with caution.

As a consequence, flooding-based search strategies are generally fast but pro-
duce excessive traffic, a large portion of which is redundant.The objective of many
works is to provide models and techniques that are capable of moderating the re-
dundant traffic. They employ network attributes and properties in order to reduce
unnecessary message transmissions. They commonly use a time-to-Live or TTL
parameter, in order to limit the forwarding of the query message beyond a prede-
fined number of hops (steps). In traditional flooding the TTL value is fixed and
determines the search space while in the Expanding Ring strategy [22] sequences
of increasing TTL values are used. Initially, TTL is set to a small value and it
is increased by one after every unsuccessful search. In [1] a TTL selection policy
is proposed which allows each node to adjust the TTL value based on local infor-
mation. Close to Expanding Ring, [5] establishes a relationship between TTL and
the probability distribution of the location of the resources and derives sequences
of TTL using dynamic programming if the probability distribution is known; oth-
erwise randomized strategies are employed. Although this condition termination
is well known and widespread for search mechanisms in p2p networks, a relation
between TTL value and success probability is still lacking.

Probabilistic search, which is the subject of this paper, is a class of search
strategies which try to alleviate the deficiencies of flooding. They exploit a property
or an estimation of the network to make a probabilistic decision whether a message
should be forwarded to another node or not. More specifically, each node that
receives a query message, forwards it to each of its neighbors with some probability
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pf , termed forwarding probability. Probabilistic strategies may either be oblivious
(e.g. [13, 22, 14]) or use predefined (e.g. [17, 23]) or tunable values (e.g. [1, 7, 27, 11])
for deciding which links to follow during the message forwarding process.

In this paper we propose a novel probabilistic flooding strategy, termed Ad-
vanced Probabilistic Flooding (apf). In our method, the forwarding probability is
a function of a) the distance from the query initiator, b) the popularity of the desired
resource and c) the number of a node’s neighbors (node degree). The forwarding
probability decreases according to the distance from the originating node. As such,
our strategy manages to stop redundant flooding paths (also known as overshoot-
ing), improving flooding performance and minimizing unnecessary costs due to
redundant messages. In addition, because the forwarding probability depends on
resource popularity, the flooding extend is adaptive, and varying depending on the
resource asked for, which adds to the efficiency of our scheme. In order to support
our results, we conduct detailed simulation experiments that evaluate the perfor-
mance of the proposed strategy. We also compare with other known probabilistic
flooding schemes, and show that our proposal results in superior performance which
in many cases matches the speed and success rates of pure flooding, while at the
same time eliminating its duplicate message overheads.

The rest of the paper is organized in the following manner. In the next section
we survey related work. In Section 3 we summarize the system model and our
basic assumptions about the search procedure. Section 4 presents our probabilistic
flooding strategy and elaborates on the required calculations. In Section 5 we focus
on the evaluation of the proposed strategy through simulation experiments. In
addition we extend our strategy to networks with tunable clustering coefficients and
special topologies, such as random power-law ones. Finally, Section 6 summarizes
the paper and discusses future work.

2 Related work

A number of strategies have been proposed to ameliorate the efficiency of flooding.
Some of these strategies strive to limit the extend of flooding deterministically,
while others try achieve this in a probabilistic manner. Deterministic schemes,
such as iterative deepening [34], local indices based search [34], and the attenuated
bloom filter [30], use an estimation of prior searches in order to forward the query.
In local indices, each node keeps the collected file indices of peers within a prede-
fined distance. If a search request is out of a node’s knowledge, this node performs
a flooding search. In iterative deepening, also known as expanding ring, the query-
ing node issues a sequence of flooding searches with increasing depth limits (i.e.
TTL values) until the resource is found. An attenuated bloom filter of depth d
stored at each node, summarizes resources probably available on all nodes d-hops
away. During the search process the next neighbor is determined by examining the
attenuated Bloom filters of the current node.

In this paper, we are interested in probabilistic flooding schemes. Probabilistic
search strategies may exploit a property or an estimation of the network to make
a probabilistic decision whether a message should be forwarded to another node
or not. Whenever a node receives a query message, it propagates it to (a subset

3



of) its neighbors with some forwarding probability, pf . One may classify these
strategies according to the nature of the forwarding decision. A class of probabilistic
strategies, which we term oblivious, forward the query message to randomly selected
neighbors. Random walkers [22, 13], belong to this category and abandon flooding
altogether. In the standard random walk, when a node receives a message and
does not hold the desired resource, it forwards the query message to a randomly
chosen neighbor. Alternatively, one can employ multiple walkers in parallel to
locate a resource [22]. The adaptivity of the walker termination conditions leads to
improved performance with respect to duplicate messages. Although random walks
are known for their simplicity and low overhead in comparison with flooding, they
usually result in larger response times [13, 22, 14]. The authors of [13] underline
the properties of normalized flooding and propose a hybrid search scheme that
combines flooding and random walks. However, these works do not address the
problem of excessive traffic and high response time.

The works in [17] and [23] represent probabilistic strategies that use fixed, pre-
defined values for the forwarding probability. In [17] a query message is forwarded
to a fixed portion of neighbors (the authors used a predefined value of pf = 0.5)
while a value of pf = 0.6 was chosen by Makino et al in [23] for exchanging routing
information in power-law networks. Depending on the characteristics of the p2p
network, these strategies may reduce the message overheads as compared to pure
flooding, but may also suffer from poor success rates, resulting in lower overall
performance. In contrast, in our case the forwarding probabilities are adjustable.

Finally, a third class of strategies use tunable forwarding probability values.
In these strategies, the forwarding probability can be the same for all nodes [1,
17, 23, 7, 27] or varying [32, 35, 11]. Using percolation theory Banaei-Kashani
and Shahabi [1] introduce probabilistic flooding and discuss how the forwarding
probability can be set to a certain critical value in order to eliminate overhead,
but without explicit guarantees regarding the probability of success. In both [1]
and [7] the value of pf is tuned so that query messages reach all nodes with high
probability, while Oikonomou el al [27] derive a relationship between the value of
pf and a desired node coverage level. They set pf to a constant value between 0.25
and 0.5. According to simulation results an appropriate value for pf is 0.4 but it
increases the termination time. Chrisostomo et al [8] are interested in a pf that is
capable of reaching all networks nodes. It can be given or it can be defined close
to 0.5.

In Adaptive Probabilistic Search (APS) [33], the probabilistic forwarding of mul-
tiple walkers is estimated using knowledge from past searches. Similarly, SPUN [16]
is based on prior knowledge of successful paths to probabilistically select the best
subset of neighbors to forward the query. Adaptive Resource-based Probabilistic
Search (arps) [35] utilizes different forwarding probabilities for different resources,
depending on estimations of resource popularity. In addition, when applied to
power-law networks each node adjusts this forwarding probability further, accord-
ing to its degree, while in [32], the forwarding probability depends on both the
sending and receiving nodes’ degree. Close to [32], in generalized probabilistic
flooding studied by [12], pf is a considered a function of the distance from of query
initiator and the degree of both the forwarding and the receiving nodes. Finally,
Gaeta et al [11] considered the effect of a forwarding probability which is decreas-
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ing exponentially with the distance from the originator, as a tradeoff with the
maximum allowable value of TTL.

In our proposed apf scheme, the forwarding probability decreases according
to the distance from the originating node but unlike [11] the rate of decay is not
exponential; in contrast, it is based on an estimation of the current node coverage.
Moreover, it is not only degree-based as in [32] or decaying popularity-based as in
[35]. Unlike the works discussed above where the decision which controls the search
process is based on just a portion of the involved parameters, the proposed apf
strategy utilizes all of them.

3 Preliminaries

3.1 The Network

In unstructured p2p systems participating peers form an overlay network which
provides connectivity among them. We model peers as nodes in an undirected graph
with a total of N nodes (vertices). Connections among the peers are represented
by edges incident with the corresponding nodes in the graph. We consider search in
overlay topologies using a random graph-theoretic model. We focus on well-known
classes of these networks such as random and power law graphs and random graphs
with tunable clustering coefficient.

Random graphs were introduced by Erdös and Rényi [10] and they are used
widely to study topological properties of real networks. The two basic, but closely
related models of random graphs are: the uniform and the binomial. In the first
model, the graph is chosen uniformly at random among all graphs G(N,M), i.e.
graphs with N nodes and M edges. In the binomial model each of the N(N − 1)/2
possible edges that connect pairs of vertices is present with probability p. This
gives an average node degree of d = pN .

Another topological class of interest is based on the preferential attachment
model, that many real-life networks seem to follow. The main property of these
networks is that their degree distribution obeys some power law, i.e. the probability
that a node is connected to k other nodes is ∼ k−α, where α a constant. Such a
model was studied by Barabasi and Albert [29], observing that a new node prefers
to connect with other nodes according to their degree. This means that, the prob-
ability that a new node will be connected to node i depends on the degree of node
i node (say di), such as

p(di) =
di∑
j dj

.

where the sum in the denominator is taken over all pre-existing nodes in the net-
work. Finally, we consider random graphs with tunable clustering coefficients.
Clustering is a common characteristic found in many real networks such as social,
biological and technological networks [24, 31] and it expresses the property that two
neighbors of a node v may also be neighbors themselves. The clustering coefficient
(cc) of the network is measure of the clustering property and is defined as [24]:

cc =
3×N∆∑

i

(
di
2

)
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where di is the degree of a node i and N∆ is the number of triangles (i.e. triads of
nodes which are neighbors to each other) present in a network.

3.2 The Search Process

In a p2p network, peers submit queries for locating a copy of a resource they are
interested in. If there exist r ≥ 1 replicas of a particular resource, then the popular-
ity of the resource is defined as q = r/N , that is the ratio of peers that possess it.
It is vital that search strategies in decentralized unstructured p2p systems be cost
effective and successful. By cost effectiveness we mean that the produced traffic to
spread a query over the network is within reasonable limits. A search is considered
successful if it discovers at least one replica of the desired resource.

In (pure) flooding, the peer that poses the query contacts all its neighbors. Any
neighbor that does not know about the resource forwards the query message to its
neighbors, which in turn forward it to their own neighbors and so on until a peer is
contacted which possesses the desired resource or some other termination condition
is met.

It is a well known fact that during this process a large portion of the gener-
ated traffic is redundant, i.e. the query message is re-transmitted, possibly multiple
times, to already visited nodes. Due to this undesirable situation, duplicate de-
tection mechanisms (DDMs) need to be employed in order to limit unnecessary
duplicate messages. Such a mechanism is used for example in Gnutella where each
query message is assigned a globally unique identifier (GUID) field [18]. When a
peer receives a message, it stores its GUID in a local query cache and keeps it there
for some time. If the peer receives the same query message again (i.e. the same
GUID), it simply discards it, avoiding unnecessary retransmissions.

It should be clear that such a mechanism can never be perfect in the sense
that a duplicate message may always appear long after its GUID was removed
from a peer’s cache, for example due to delays in the underlying physical network.
Nevertheless, this simple mechanism is quite powerful and manages to eliminate
most of the redundant traffic. Notice, however, that even by using a perfect DDM,
there are certain duplicate messages that cannot be prevented. They concern copies
of the query message that arrive at the same node through different paths in the
network. All this duplicate detection mechanism can do is stop propagating them
after they arrive. In what follows, we assume that independently of the variation
of flooding used, an ideal DDM is in effect, unless otherwise stated.

A typical termination condition of the search process is the TTL parameter,
which limits the length of the paths followed by a query message. A drawback of
flooding-based search, is that if the resource is found in one path, the other paths
followed by the flooded message continue to evolve until TTL expires, as there is no
way to inform them that the resource has already been found. The purpose of our
work is to further reduce this overhead. As in other randomized flooding strategies,
we indirectly add one more termination condition: the forwarding probability, pf .
An intermediate peer may stop propagating the query further to its neighbors with
probability 1− pf . In contrast to other strategies, this probability is not constant;
the forwarding of the message is a local peer decision which takes into account the
distance from query initiator and an estimation of whether the query is already
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answered. The details are presented in the following section.

4 APF: A New Probabilistic Flooding Strategy

Consider a node u that has received a query for a particular resource. If u does not
possess the resource, according to probabilistic flooding, it has to decide whether
to forward it to a particular neighbor with some probability pf . The main idea
behind our strategy is that the query message should be propagated further only if
the query has not been answered yet ; that is pf should be equal to the probability
that the required resource has not been discovered by the flooding procedure up to
that point. Thus pf should be a function of t, the distance from the query initiator,
or equivalently the “step” of the search.

Suppose that node u receives the query at step t, and that by step t there are
Nt nodes that have received the query. Node u will decide whether to forward
the message any further by estimating the probability that the resource has been
found up to step t. The number of nodes that have not been visited yet is given
by N −Nt. If there exist r replicas of the required resource, then the probability
that the resource has not been found as of step t is given by the probability that
all those r replicas have been placed among the N − Nt remaining nodes (which
clearly have to be at least r in number, otherwise the resource has already been
found).

Because in unstructured p2p systems there is no correlation between the overlay
topology and the placement of data, we may make the simplifying but accurate
assumption of independent replica placements. As a result, the probability that a
replica is placed in one of the not-yet-visited nodes is given by:

N −Nt
N

= 1− Nt
N
.

Consequently, the probability that all r replicas are placed among these nodes is
given by: (

1− Nt
N

)r
.

This is the probability that none of the already visited nodes is an owner of the
resource. In such a case, node u should indeed forward the query and this is exactly
what we do in our apf algorithm.

Summarizing the above discussion, in apf any node that receives the query
message at step t, and does not possess the required resource, propagates it to its
neighbors with a forwarding probability

pf (t) =

(
1− Nt

N

)qN
, (1)

where q = r/N is the popularity of the resource and Nt is the number of distinct
nodes that have received the query by step t. We let pf (0) = 1, which in effect
forces the initiator to transmit the query to all its neighbors.

In order for a node to calculate the forwarding probability of (1), it must known
about:
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(a) the popularity of the resource (q) and

(b) the total number of visited nodes by step t (Nt).

We consider (b) in the next section. Regarding (a), in what follows we assume that
popularities are known. Otherwise they can be estimated at each node using tech-
niques that monitor the local traffic. Zhang et al [35] use a mechanism to estimate
the popularity of resources that exploits the feedback from previous searches by
updating a local table with estimated popularities. After forwarding a query, the
peer decreases the estimated popularity by a factor β. Positive answers increase
the resource popularity according to the distance from the intermediate node to
the resource owner. Bisnik and Abouzeid [2] suppose that each node maintains a
popularity table for each resource on the system. The estimation of resource popu-
larity is based on feedback from the most recent searches. If there is no knowledge
or estimation mechanism, a peer should use a small value for q, in order to be on
the conservative side.

4.1 Estimation of coverage

Consider now Nt, which is the coverage, i.e. the number of distinct nodes that have
received the query message, by step t. If we denote by ni the number of new peers
contacted at step i, 0 ≤ i ≤ t, of the search process, then clearly:

Nt =

t∑
i=0

ni, (2)

where N0 = n0 = 1 as the initiator node is considered to be aware of the query just
before the first step. As a result, our problem is reduced to estimating the number
of new nodes met at each step of the procedure.

An approximation of the average number of peers in distance i from a given peer
is given by Newman et al [25]. In particular, if pk is the probability that a node
has degree k, then the generating function for the probability of vertex degrees is
given by:

G0(x) =

∞∑
k=0

pkx
k.

The generating function for the degrees of vertices reached by following a random
edge is denoted as G1(x) and can be seen that G1(x) = G′0(x)/G′0(1), where G′0
is the first derivative of G0. It is then derived that the average number of visited
nodes in any distance i is given by:

[G′1(1)]i−1G′0(1).

As Chandra et al pointed out [4, 3], this approach does not correspond exactly
to the number of distinct nodes reached by flooding because of “cross” and “back”
edges in the overlay network. Back/cross edges are links that lead to the formation
of cycles. The authors then refine the model by estimating the cross edge probability
and back edge probability at any distance i from a given node.
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We follow a similar but simpler approach to estimate the number of visited
nodes i steps away from the query initiator, which also takes into account the fact
that in probabilistic flooding not all possible neighbors are contacted. Below we
assume a random graph in the Erdös and Rényi sense; a refinement for power-law
random graphs will be derived later.

Let ni be the expected number of unique contacted nodes that lie in distance i
from the query initiator. Consider the message transmissions during step i. Because
we have assumed that a duplicate detection mechanism is in effect, the only peers
that forward the query during this step are the ni−1 nodes in distance i−1 from the
initiator for, otherwise, there would exist more than ni−1 nodes in that distance.
Since a node should not transmit the message back to the neighbor that delivered
it, the nodes in question will only transmit to new nodes in distance i. Given that
the average node degree is d, then from the (d−1)ni−1 message transmissions, only
a portion of

1− Ni−1

N

will be delivered to new nodes. This is because, out of the N possible destinations
of a messages, the Ni−1 have already been visited by time i− 1. Considering also
the fact that because of randomized flooding, each of the transmissions of nodes in
distance i−1 occurs with probability equal to the forwarding probability, pf (i−1),
we obtain:

ni = (d− 1)ni−1

(
1− Ni−1

N

)
pf (i− 1), (3)

In conclusion, (1)–(3) constitute a set of recursive equations which can be used
to obtain the desired forwarding probability at any step of the procedure.

5 Evaluation

In this section we evaluate the proposed strategy through simulation experiments.
We have constructed a peer-to-peer message-level network simulator, implemented
in C, which is able to generate various random graph topologies, such as uniform
random, random regular, random with tunable clustering coefficients and power-
law graphs according to user-supplied parameters. It can also generate random
graphs with a given degree distribution and clustering coefficient according to the
algorithms of Heath and Parikh [15]. The simulator also places R resources, based
on the uniform or the proportional replica distribution schemes [6]. In uniform
replication, every resource has the same number of replicas while in proportional
replication the number of replicas of each resource is proportional to the query
probability. These have been shown to be among the worst replication strategies
with respect to search performance [6] and have been chosen so as to stress the
search algorithms we consider here.

After the topology construction, for each simulation run nodes of the system
are selected in random and are marked as owners of a resource replica, according
to the given placement policy and the resource popularities. Then one of the peers,
chosen uniformly randomly, initiates a search query. The search is limited by a
TTL (time-to-live) parameter, t, which gives the maximum allowed number of
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Figure 1: Coverage in a random 6-regular network of 100,000 nodes.

steps / path length. During the search detailed statistics are kept, including the
total number of messages, the number of duplicate messages, the number of visited
nodes, etc. If at least one replica of the resource is found within the t steps, the
query is considered successful, otherwise it is unsuccessful. We run each experiment
at least 1000 times and average the results. The portion of runs that resulted in
successful queries gives the probability of success for the particular value of t. For
each simulation run the network and the resource placement remains unchanged.

In order to make a comparative study, in our simulator we have implemented
most known probabilistic flooding strategies, as presented in the introduction. Here
we include results for representative algorithms which include plain flooding, mod-
ified bfs [17] and arps [35], along with our proposed apf.

5.1 Random Graphs

We have examined a large number of random and random regular graphs. In a
random graph the degree of vertices varies according to the probability of inclusion
of an edge (p), giving an average degree of d = pN . In a random d-regular graph
all nodes have the same degree, i.e. d = d.

Before we present comparative results, we demonstrate the effectiveness of our
approach. In Figs. 1–2 we have considered a random 6-regular network. For the
plot in Fig. 1 we issue queries for a resource with popularity q = 10−4. The
curves show the number of covered nodes, as obtained from the simulation, and
as predicted by (2), showing the accuracy of the estimation. In Fig. 2 we plot the
forwarding probability for different values of resource popularity. It can be seen
that the less popular the resource, the higher the forwarding probability in order
to force propagating the query to more nodes. Another important observation is
the fact that the shape of the curves are the exact opposite of the coverage curve in
Fig. 1. The forwarding probability is high in the initial steps and later becomes low;
the transition occurs at approximately the same step where coverage is becoming

10



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12

F
o
rw

a
rd

in
g
 P

ro
b
a
b
il

it
y
 (

P
f)

t

6-Regular Graph

0.00001
0.00005
0.00010
0.00020
0.00030
0.00040

Figure 2: Forwarding probability curves for different popularity values in a random
6-regular network of 100,000 nodes.

Table 1: Simulation network parameters (ER random network, 100,000 nodes)
d q flooding mbfs arps
5 5× 10−5 pf = 1 pf = 0.5 pf = 0.9

6-regular 3× 10−4 pf = 1 pf = 0.5 pf = 0.8
7 with cc = 0.14 5× 10−5 pf = 1 pf = 0.5 pf = 0.9

high. We believe this plays an important role in the performance of our strategy.
In Fig. 3, we measure the efficiency of apf using proportional replication on a

random graph of N = 100,000 nodes and average degree equal to d = 6. We assume
that each query i follows a Zipf-like distribution (∝ i−α). Also resource popularities
follow Zipf-like distributions (qi ∝ 1/i−α) with a given α value. For this example,
the value of α is set to 0.8, while the resulting resource popularities ranged from
approximately 0.22 to 10−4. The plot shows that the amount of duplicate messages
is negligible while high success rate is achieved. Even if the resource popularity is
very low (e.g. 0.0005), the number of duplicate messages also remains in low levels.
The reason is that each peer exploits local information in addition to its distance
from the originating query node (TTL value).

Next we mainly use uniform replication as both uniform and proportional have
similar results, the search space is independent from query rate [6] and uniform
replication is fair in terms of equitable allocation of replicas. In the following, we
present experiments with random and random regular p2p networks of N = 100,000
nodes. The average node degree varies from 5 to 7 and the resource popularity
ranges as 5×10−5 ≤ q ≤ 10−3, that is resources have from 5 to 100 replicas for the
particular network size we consider, i.e. not very popular, so as to stress the search
procedure. Table 1 summarizes the simulation parameters.

Figs. 4–5 present the performance of the proposed strategy in comparison with
the others. In Fig. 4 we have considered a random graph with an average node
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Figure 3: Probability of success (a) and duplicate messages (b) in a random network
of 100,000 nodes with proportional replication and varying resource popularity
(0.21948 ≤ q ≤ 0.0005).

degree of 5, where we search for a rare resource with popularity q = 5 × 10−5.
We plot both the probability of success and the message overhead, as the number
of duplicate message transmissions. In Fig. 4(a) we observe that most strategies
manage to achieve 100% success probability with a TTL value of 7 hops, where
most of the nodes have been visited. At the same time, Fig. 4(b) shows that this
is achieved with minimal duplicate message overheads for apf. Modified bfs has
an even smaller duplicate message cost but this is due to the low success rate it
achieves as seen in Fig. 4(a).

The situation is similar in Fig. 5 where all strategies have better performance
due to the higher popularity of the required resource. Even in this case, however,
the superiority of our scheme is apparent since it combines the effective success rate
with almost no duplicate message overheads, in contrast to all the other methods.

Next we consider random graphs with given clustering coefficient. Because the
clustering coefficient, cc, represents the probability that two nodes with a common
neighbor are also neighbors themselves, only a fraction 1− cc of the edges a node
uses at any step i will lead to new (unvisited) nodes. Consequently we modify (3)
as follows in order to account for the given clustering coefficient:

ni = (d− 1)ni−1(1− cc)
(

1− Ni−1

N

)
pf (i− 1), (4)

Thus for this type of networks we use equations (4) instead of (3).
In Fig. 6 we present results for a random graph (Poisson-distributed degrees)

with clustering coefficient cc = 0.14 while the Table 1 summarizes the other network
parameters for this simulation. The results for the probability of success (Fig. 6(a))
and the number of duplicate messages (Fig. 6(b)) are in agreement with what we
observed in the other networks we considered. apf, with the modification of (4),
behaves quite efficiently.

In conclusion the behavior of apf is quite impressive, both in terms of success
rate and in terms of overhead. It manages to approach the performance of pure
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Figure 4: Probability of success (a) and duplicate messages (b) in a random network
of 100,000 nodes and r = 5.
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Figure 5: Probability of success (a) and duplicate messages (b) in a random 6-
regular network of 100,000 nodes and q = 0.0003.

flooding but without incurring its cost. As an additional note, we remind the reader
that we have assumed that an ideal duplicate detection mechanism is in effect as
discussed in Section 3.2. We have conducted identical experiments with the DDM
disabled; while the probability of success is not affected, the number of duplicate
messages is vastly increased in all algorithms but apf, accentuating the benefits of
our strategy even more.

5.2 Application to other networks

In this section we assess the performance of our approach on networks other than the
uniform random ones. We consider power-law networks and in particular we gener-
ate such networks with 100,000 nodes using the Barabasi-Albert (BA) model [29],
starting from two nodes and adding one new node at each step with m = 2 links.

Deploying the apf algorithm over this topology, we observed that, while the
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Figure 6: Probability of success (a) and duplicate messages (b) in a random network
of 100,000 nodes, d = 7 and clustering coefficient cc = 0.14.

Table 2: Simulation parameters of other networks
d graph nodes q flooding mbfs arps
4 BA 100000 0.00005 pf = 1 pf = 0.5 pf = 0.9
4 BA 100000 0.001 pf = 1 pf = 0.5 pf = 0.7

4.9 gnutella 26518 0.0037 pf = 1 pf = 0.5 pf = 0.7
23 slashdot 82168 0.00006 pf = 1 pf = 0.5 pf = 0.9

probability of success remains at high levels, the number of duplicate messages
increases substantially. This is depicted in Fig. 7(a) for a network of d = 4, where
apf seems to have no difference from pure flooding. The explanation lies on the
structure of of this topology that results in varying average node degrees, dt, in
distance t from the originating node, which are different from the average degree
(d) of the network overall. In Fig. 7(b) we have plotted the average degree of nodes
at distance t = 1, 2, . . . , 10 from the originating node as observed in simulation
sessions for three different networks: a random graph with d = 4, a BA power-law
graph with d = 4 and a real Gnutella snapshot with d = 4.9, which will be discussed
below. Unlike the random graph for which the average node degree remains almost
constant at any distance t, in the other two networks it varies significantly with t.

Because in power-law networks the vast majority of nodes have small degree
and very few nodes are highly connected, the average network degree (d) is very
different from the average degree of the visited nodes at each step of the procedure.
If the average node degree, dt, in distance t from the originating node was known
then our strategy would be applicable by using dt instead of d in our model (eq. (3)):

nt = (dt − 1)nt−1

(
1− Nt−1

N

)
pf (t− 1), (5)

In order to verify this claim, we performed the following experiment: we deter-
mine dt, by averaging the degree of nodes at distance t, as seen by the simulation of
the pure flooding strategy. We then utilize the measured quantities in (5) and ap-
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Figure 7: (a) Duplicate messages when searching in a BA power-law network of
100,000 nodes, d = 4 and r = 10. (b) Average degree of neighbors at distance t
from the originating nodes in different topologies.

ply apf using (5) instead of (3). The results are given in Figs. 8–9. The simulation
parameters are summarized in Table 2.

The simulation results in Figs. 8–9 show the duplicate message reduction when
searching for a resource with r = 100 and r = 5 replicas respectively. Using
knowledge about how the average node degree varies with respect to the distance,
apf manages to reduce again the search cost as it eliminates the duplicate messages
without decreasing the response time or the query success rate.

In Fig. 10–11 we apply the same idea for two “real”-world graphs, namely
snapshots of the gnutella p2p and the slashdot social networks, as obtained by the
Stanford Network Analysis Platform [19]. More specifically we consider a trace of a
2002 gnutella network with 26518 nodes and 65369 edges (Fig. 10) and and a trace
of the Feb. 2009 slashdot network with 82168 nodes (Fig. 11). Other simulations
parameters are described in Table 2. As above, we obtain the value for dt form
the simulation of full flooding. We performed same experiments over these real
topologies. The conclusions remain the same; in any case our approach results in
a significant reduction of duplicate messages. As it seen in the figures, it does not
affect the probability of success, which is kept at the same levels as in flooding.

6 Discussion and Future Work

In this work, we present apf, a novel probabilistic flooding strategy that can be
employed for query routing in unstructured p2p networks. Each node that receives
the query message decides whether to propagate it any further with probability pf
which is based on an estimate of the nodes that are covered at each step, and the
popularity of the requested resource. This is in contrast to other strategies that
either keep a constant forwarding probability or decrease it obliviously according to
the distance from the originating node. We assess experimentally the performance
of apf through detailed simulations, in a variety of network topologies which include
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Figure 8: Probability of success (a) and duplicate messages in a BA power-law
network of 100,000 nodes and r = 100 replicas.
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Figure 9: Probability of success (a) and duplicate messages in a BA power-law
network of 100,000 nodes and r = 5.

uniform random graphs, power-law graphs and real network snapshots, with or
without a clustering coefficient. Comparing it with other known approaches, we
show that our strategy results in high success probabilities (almost the same as full
flooding) while at the same time enjoying quite low duplicate message counts.

We are currently working on enhancing the applicability of apf in power-law
random graphs; we work on determining approximate values for the average node
degree, dt, in distance t from the originator of the query, both analytically and
algorithmically. Another step in this research, is to investigate whether our algo-
rithm can be combined with other existing search techniques. This seems to be
possible because in our strategy each node uses a local estimation, independently
of the other peers.

As part of our on-going work, we are currently considering highly dynamic
networks and studying the impact that the addition and deletion of nodes (churn)
in the p2p network may have on the performance of apf. The behavior of each
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Figure 10: Probability of success (a) and duplicate messages in gnutella snapshot
of 26518 nodes and r = 100 replicas.
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Figure 11: Probability of success (a) and duplicate messages in slashdot snapshot
of 82168 nodes and r = 5 replicas.

17



node is determined by its lifetime and the connections which are kept alive with
others nodes, i.e. its neighbors. Connections can be removed or replaced depending
on new node arrivals and old node departures. Although the recent models of
networks evolution presume constant average degree and slowly growing diameter,
Leskovec [20], has shown, based on empirical observation, that the average degree
is increasing while the average distance between nodes is decreasing and a giant
component emerges.

Our approach is based on two fundamental network parameters, the average
node degree and the distance from the query initiator. In this paper we have
assumed a constant average degree but for the case of dynamic networks we are
working on the estimation of the average degree as a function of time. We expect
that as the average distance decreases and a giant component covers a signifi-
cant fraction of nodes, the accuracy of our model increases and the performance
of apf improves accordingly. In addition, previous works in mobile ad hoc net-
works (MANETs), e.g. [21], strengthen our expectation that in dynamic networks,
probabilistic flooding seems to be the most suitable search strategy.
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[8] Crisóstomo, S., Udo, S., Christian, B., Joao, B.: Probabilistic flooding in
stochastic networks: Analysis of global information outreach. Computer Net-
works 56(1), 142 – 156 (2012). DOI 10.1016/j.comnet.2011.08.014

[9] Dimakopoulos, V.V., Pitoura, E.: On the performance of flooding-based re-
source discovery. IEEE Trans. Parallel Distrib. Syst. 17(11), 1242–1252 (2006).
DOI http://dx.doi.org/10.1109/TPDS.2006.161
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