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Abstract

Reproducing complex networks with features of real-life net-
works is exciting and challenging at the same time. Based on the
popular Omnet++ discrete event simulator, we introduce Armonia,
a framework for modeling massive networks and their dynamic in-
teractions. It includes a collection of topology generators, a set of
resource placement and replication modules, a component for spec-
ifying resource location strategies, while also offering support for
exporting data in order to visualize or analyze with other appro-
priate tools. Our framework targets search protocols in large-scale
dynamic networks. Here, we apply it to simulate various probabilis-
tic flooding strategies, making a comparative study of their perfor-
mance over different network topologies.

1 Introduction

Complex systems, such as electrical power grids and telephony
networks, social relations, the World-Wide Web and the Internet,
collaboration and citation networks of scientists, are large and scale
free [22]. They represent a set of entities, e.g. individuals, defined
in an abstract space (the nodes) and the relations among them (the
links) [5] that are dynamically evolving in time. To deal with the
complexity of these networks, researchers turn to graph theory and,
particularly, random graphs.

Modeling and studying complex systems / networks purely ana-
lytically is not always a viable approach; there is a need for a sim-
ulation framework in order to gain insights to their behavior, to test
and evaluate new ideas, to reproduce results, to compare with empir-
ical results or to validate other research. On the other hand, it may
be simply impossible to access and experiment with a real system,
while a simulation framework provides all the necessary facilities
to interact with such a system. Studies rely on simulation in order
to understand the structure, formation, function and any ongoing
processes in the actual system.

A realistic simulation framework is essential for at least three
reasons. The first is that it can reproduce real systems and their
interactions, for example, how nodes are connected or what is the
nodes’ importance according to their position in network. The sec-
ond is that it can be employed to design, implement, evaluate and

propose new ideas or protocols [3]. The last reason is that it can be
used to confirm analytical results, to gain useful insights or to reveal
hidden properties.

Even though these systems may have different attributes (e.g.
channel characteristics, mobility features) they can be represented
as a network graph. The simulator operates in abstracting fashion,
provides a tunable environment via module and parameters and re-
moves the complexity of construction of the network topology.

Given the network, searching is one of the fundamental issues.
It refers to the ability to discover and locate a target (a person in
a social network, a resource in p2p network, a router in a commu-
nication network) without complete knowledge about the network
topology and/or the target placement [6]. To achieve this, the node
uses only local information and applies a search policy to forward
the request to some of its neighbors, which in turn push it to their
neighbors, and so on, in order to reach the target. The problem of
searching has received a lot of attention by the research community.
A significant number of algorithms have been proposed, analyzed
and compared experimentally using a multitude of custom simula-
tors, which in most cases are used only to support one particular
proposal ([18], [19]).

In this work, we introduce a novel network simulator, called Ar-
monia. To the best of our knowledge this is the first general-purpose
simulator tool which allows the simulation of arbitrary search pro-
tocols over arbitrary network topologies. We present the design
of a framework that can facilitate the reproduction of realistic net-
works, exhibiting churn and dynamicity, while evolving over time.
Armonia is a flexible tool that combines a set of components to per-
form three main functions: modeling (arbitrary topologies), simu-
lating (search and replication strategies) and analyzing (collecting
statistic results). To deploy these features, the users may customize
the framework according to their interests, with respect to overlay
topology (which can be static or dynamic), resource placement and
search strategy. There are a number of predefined modules for the
network topology, the search protocol and resource allocation, but
the framework is extensible, allowing the implementation of addi-
tional models and policies as module plug-ins. Here is a summary
of our contributions:

• We present a novel, general-purpose simulator for simulating
realistic networks, exhibiting churn and dynamicity.
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• We provide a flexible framework to investigate the behavior of
various search protocols and replication strategies in complex
networks.

• We examine the performance of probabilistic flooding proto-
cols in static and dynamic networks.

The remainder of this paper is organized as follows. Section 2
discusses related work and surveys relevant tools. Section 3 presents
the Armonia simulation framework, and gives a detailed description
of its architecture. Main findings, simulation results and discussions
are reported in Section 4. Finally, Section 5 concludes the paper.

2 Related Work

Significant effort has been directed towards implementing a vast
amount of simulation tools for complex networked systems. We
distinguish these simulator classes as follows:

(a. short-lived, custom ones, which constitute the most common
type of simulators for personal use [18], [19]. They are usually
written by authors to support their works,

(b. detailed, low-level simulators, which are general purpose net-
work simulators focusing on the physical network (such as the
well-known NS-2, NS-3). They provide substantial support for
simulating, transportation media, devices and networking pro-
tocols, and

(c. application-level ones, that are also general purpose simula-
tors, aiming at large scale overlay networks such as p2p net-
works, social networks, biological networks.

We are interested in the last class, and we strive to implement a
framework that can facilitate the reproduction of realistic networks,
exhibiting churn and dynamicity while evolving over time. The bib-
liography, on the networks we are interested in, bases the experi-
mental results mostly on static snapshots of the systems, while our
pursuit is to study environments where nodes join and leave contin-
uously.

Short-lived simulators are bespoke and very difficult to compare
with one another or to extend. In addition, they also involve signifi-
cant duplication of effort.

Regarding low-level simulators, NS-2 and NS-3 are among the
most popular. NS-2 [16] is a discrete event simulator written in
C++ and OTcl. NS-2, and its successor NS-3, support research and
education on networks and internet systems. NS-3 provides models
of how packet data networks work and perform, and offers a detailed
engine for users to conduct simulation experiments.

Application-level frameworks can be used to experiment with
possibly complex and varying conditions, in order to address a suf-
ficiently wide range of interactions on a network. These simula-
tors are composed of two major parts: a) the nodes and b) the net-
work connecting all nodes. A node incorporates resources (e.g. files,
memory, energy). The network is often very large (connecting mil-
lions of nodes), static or dynamic where the interactions between
the nodes are rapidly changing and evolving. The network is used
to model in detail the structure of real systems. PeerSim [17], SNAP
[12], Omnet++ [23], and Oversim [4] belong to this class of simu-
lators.

PeerSim [17] is a Java-based p2p system simulator with two sim-
ulation engines: a cycle-based one and an event driven one. It offers
predefined models such as Pastry, Chord, Kademlia, Skpnet, Bittor-
rent, TMan and Cloudcast while the user can build its own protocol.
The cycle-based engine is scalable as it avoids the overhead required
to simulate low level communication but it provides for less realistic
models than the event-based engine.

The Stanford Network Analysis Platform (SNAP) [12] includes
a general purpose, high performance system for analysis and ma-
nipulation of large networks. The core SNAP library is written in
C++/Python and optimized for maximum performance and com-
pact graph representation. It easily scales to massive networks with
hundreds of millions of nodes, and billions of edges. It efficiently
handles large regular and random graphs, calculates structural prop-
erties, and supports attributes on nodes and edges. It is, however,
designed to simulate only the evolution of the network topology.

Omnet++ [23] is an open source simulation library and frame-
work, widely used for the simulation of communication protocols
and networks. It is modular, component-based and written in C++.
Due to its generic and flexible architecture it is primarily used for
building network simulators in various domains such as communi-
cation networks, complex systems, queuing networks or hardware
architectures. Our simulation framework is based on Omnet++.

Oversim [4] is a C++-based open-source framework for p2p net-
works designed to work over the OMNet++ simulation environ-
ment. The simulator offers several overlay models for structured
(e.g. Chord, Kademlia, Pastry) and unstructured (e.g. GIA) p2p sys-
tems and protocols. The user can extent the model with additional
protocols or network topologies.

SNAP supports only non-dynamic networks, i.e. it does not cover
the addition or removal of nodes after the formation of the topology.
On the other hand, Oversim requires significant effort to accurately
implement a network model. In PeerSim the network is completely
abstracted, precluding studies that would mandate different imple-
mentations of the underlay networks, including realistic attributes
(e.g. latency). Another drawback of PeerSim is the fact that it has no
support for gathering statistics. PeerSim and Oversim were specif-
ically designed for simulating p2p networks while Omnet++ is a
general purpose simulator. Moreover, Omnet++ covers the need for
precise network simulation. Based on the above, we consider Om-
net++ as the most appropriate basis for our purposes here.

Another flexible infrastructure for simulating large-scale com-
plex networks is the DRGSimLib toolbox [10] which is also im-
plemented on top of Omnet++. It operates in a high abstraction
level, and the interactions between simulated objects mimics the
real (communication) networks. The networked system is repre-
sented as a graph and its topology is implemented by a generator
plug-in. We will give more details about this library because, in
part, the topology component of our framework was inspired by it.

The main components of the toolbox are the node, the nodeFac-
tory, and the topology. The node is a compound module which
is used to represent each simulated object, as shown in Fig. 1. The
nodeFactory component manages the creation and deletion of nodes
while the topology component handles the nodes relations or net-
work connections.

The nodeFactory component operates independently of the other
components. It manages the population of nodes in the system. It
generates and deletes nodes according to their lifetime specifica-



Figure 1. A network node corresponds to a graph
vertex

tions. The node module includes an essential part, the topologyCon-
trolNic (nic) that registers or unregisters a node with the topology.
The nic acts as an interface between a simulated object and a graph
vertex. It is aware of which are the neighbors and of any changes in
the local neighborhood.

The topology component manages the generation and the main-
tenance of the graph which represents the networked system. It
consists of a topologyControl and a generator module. The gen-
erator acts as a plug-in and handles the network formation. The
tpologyControl oversees the graph and calls the generator to add or
remove nodes, and in conjunction with the nic, maintains the graph
structure. The topology component is responsible for the close cor-
respondence of each graph vertex to each node and for handling
nodes churn.

Summarizing, the available application-level simulator packages
provide models only for the network topology and its evolution.
They serve the purpose of studying how the structure of the sys-
tem behaves over time and to derive mostly graph-theoretic metrics.
There are no known general-purpose simulators that allow experi-
mentation with search and replication algorithms, which can be ef-
fected on different network topologies, even though these problems
have received considerable attention in the open literature. Our sim-
ulator serves to fill the gap, and is presented next.

3 Our Simulation Framework: Armonia

We envisage a simulator framework that makes it easy to study
arbitraty search and replication strategies in arbitrary complex dy-
namic networks. While the other known simulators aim to model
large-scale networks, we seek to model complex interactions over
such networks, such as searching or resource allocation. Our simu-
lator is multi-purpose and consists of several components:

• The topology component, which consists of nodes and their
links, and can be used to define arbitrary structures. A number
of distinct, ready-to-use topologies are offered.

• The resource and replication component, a collection of mod-
ules to control the creation and the allocation of resources.

• The search protocol component, which is responsible for ap-
plying a predefined search method on the overlay network.

• The statistics component, which is used to collect global or
local statistics according to user requirements.

Fig. 2 shows an example of a simple network and its structure.
It includes the nodes, as presented by the Omnet++ graphical inter-
face, along with the topology as visualized using the well-known
Gephi package [2].

3.1 The Topology

As mentioned above, the DRGSimLib library [10] formed the
basis for the topological part of Armonia. We have modified that li-
brary considerably, with new functional components and structural
enhancements. We have also introduced additional network topolo-
gies. In particular, we maintain the DRGSimLib abstraction for
the network, which consists of a topology management component
(topologyControl) and a collection of model networks (generator)
with some adaptations. In particular:

• New network models have been added.

• Multiple edges between a pair of nodes can be disallowed.

• The clustering property has been added to network model.

• The node component is redesigned and new features are added.

Taken together, these modifications add more capabilities and func-
tionalities to the simulator.

New network models The topologies implemented by the authors
in [10] include Barabási, FullyConnected, random, Tree and gn-
pRandom (a modified version of Erdős-Rényi netowrk). We have
implemented the classical Erdős-Rényi random graph [8] and the
Caveman-Solaria model, which enables the formation of networks
with the small world property [24]. Moreover we implemented a
new class that provides the ability to access and proccess other large
scale network datasets (such as the ones included with SNAP [12]).

Multiple edges Based on user’s choice, the connections among a
node pair (u, v) can be limited to at most one edge. This way, we
avoid setting multiple edges between a pair of nodes at network cre-
ation or network evolution, which might affect the correct operation
of certain search protocols.

Clustering coefficient Clustering is a common characteristic
found in many real networks and it expresses the property that two
neighbors of a node v may also be neighbors themselves [20]. The
clustering coefficient is given by:

cc =
3×N∆∑

v

(
dv

2

)
where dv is the degree of a node v andN∆ is the number of triangles
(i.e. triads of nodes which are neighbors to each other) present in a
network. The clustering property is a crucial factor [1] and affects
the functionality and the structure of the network. The user adjusts
it via a configuration parameter (clusterCoefficient) which has been
added to the topology generator. Setting it to zero effectively dis-
ables this property.



Figure 2. An instance of a simple Armonia simulation: the Omnet++ network (left) and the corresponding topol-
ogy (right).

Figure 3. The structure of each node

Figure 4. The use of the protocol and resource mod-
ules in Armonia.

The node component The node represents an entity along with
its attributes. The component maintains the original communica-
tion module (nic). In addition, a protocol and a resource interface
are in effect, as depicted in Fig. 3. The operation of the protocol
module is specialized to satisfy the requirements imposed by the
search strategy and the replication policy. The resource interface is
used to manage the resources offered by the node. Protocols and re-
sources, which inherit from respective base classes, can be specified
in a configuration file.

3.2 Resource and Replication

Resources are distributed across the network at various nodes
and can be accessed by other nodes. Important issues in such an
environment include:

• The resource distribution model, which defines how many dis-
tinct resources are available in the system and how they are
assigned to nodes.

• The replica distribution model which specifies how many
replicas of each resource are present in the system.

• The resource acquisition model, which focuses on obtaining
the right resources that meet each node needs.

Our resource management framework is quite general, allowing re-
searchers to plug in their own resource management policy.

The controlResource module is a simple Omnet++ module and is
used to handle the resource and the replica distributions. Assuming
that there are m distinct types of resources on the system and each
resource i is replicated on ri nodes, the total number of resources
is R =

∑m
i=1 ri. We implement three static replication distribu-

tion schemes, namely uniform, proportional and square-root [14],
as follows:

• Uniform: all resources are replicated to the same number of
nodes (ri = R/m)

• Proportional: the replication of a resource i is proportional to
its relative popularity, denoted as qi and defined as the portion
of queries issued for the ith resource (ri ∝ qi).

• Square-root: the replication of a resource i is proportional to
the square root of its relative popularity (ri ∝

√
qi).

The parameters of the controlResource module include the maxi-
mum number of different resources in the system (maxNumOfRe-
sources) and the name of the replica distribution scheme (distribu-
tionName).

Each node is assigned and maintains a number of resources. In
addition to resource and replica distribution, the node’s resource
module handles resource acquisition. At node initialization, the re-
source module acquires resources from the controlResources mod-
ule using the uniform allocation policy, whereby resources are cho-
sen uniformly randomly from the global set of all available re-
sources.



After the formation of the network, when churn commences and
nodes start entering and leaving the network, each joining node ac-
quires resources according to one of three predefined policies: uni-
form, reusable and exchange. In the uniform policy, resources con-
tinue to be chosen uniformly randomly from the global set of all
available resources. In the reusable policy, before a node leaves
the system, it returns its resources to the controlResources module
for reuse. Then, when a new node joins the system, the control-
Resources module will assign from the reusable resources, if they
exist. Finally, if the exchange policy is in effect, a node asks its
neighbors for resources, selects a random set and replicates them lo-
cally. The above policies allow us to model behaviors that occur in
real systems. For example, the exchange policy is used in p2p sys-
tems (e.g. in Gia [7]) and virtual communities, while the reusable
policy can be used to model the resource management scheme in
Hadoop [25].

3.3 The Search Protocol

Searching is a fundamental process and is used to discover ser-
vices and resources, to locate cooperators and to discover trust net-
works [13]. In Armonia, the search component is responsible for
applying the search algorithms over the network. It plugs into the
node component via the protocol interface, which inherits from the
generic IProtocol interface. Its objective is twofold: first, it facil-
itates the utilization of diverse search algorithms, simply by speci-
fying a protocol class name in the simulator configuration file, and
second, it carries out all the common tasks required by the search
process.

Our infrastructure includes a mechanism which can help avoid
the further forwarding of an already sent message. In effect it
implements a local monitor at each node connection in order to
limit retransmissions on that edge. It also provides a handler for
resource allocations during the initialization phase of new nodes
(e.g. when the exchange resource acquisition policy is in effect).
To let a node know if a given query was received and transmitted
in the past, we maintain a pastQueriesBuffer structure that stores
past queries. Users can limit the capacity of pastQueriesBuffer via
the pastQueryCounter configuration parameter. Moreover, we mark
the edge where a message came from, and (based on a configurable
flag) we do not include it in the forwarding group.

The above mechanisms can be used by any search policy and are
optionally bypassed, if required. The search procedure is completed
by considering the initialization of a query and the forwarding group
selection. The whole infrastructure simplifies considerably the im-
plementation of new search schemes. We currently offer a number
of search strategies:

• Flooding, which is probably the most well-known and generic
strategy. It is frequently used in the absence of any informa-
tion about resource placement. In (plain) flooding, the node
that initiates the search sends a query message to all its neigh-
bors. Any neighbor that does not know about the resource
propagates the message to all its neighbors and so on, until
the resource is discovered or some termination conditions are
reached. Flooding-based strategies commonly use a Time-To-
Live (TTL) parameter, in order to limit the forwarding of the
query message beyond a predefined number of hops (steps).

Flooding is generally fast, but produces an excessive number
of messages, many of which are redundant.

• Random walkers [14, 9]. In the standard random walker, when
a node receives a query and does not hold the desired resource,
it forwards the message to one, randomly chosen neighbor. Al-
ternatively, one can employ multiple walkers to propagate the
query in parallel and locate the resource faster, at the expense
of more message transmissions.

• Modified BFS [11], where a query message is forwarded to
each neighbor with a fixed probability (called forwarding prob-
ability), in order to reduce the message overheads of plain
flooding.

• ARPS [26], which utilizes different forwarding probabilities
for different resources, depending on estimations of resource
popularity.

• APF [15], where the forwarding probability varies according
to the distance from the query initiator and utilizes knowledge
about resource popularity.

3.4 Statistics

The collection of statistics serves two purposes; first, the user
can obtain measurements about the system as a whole (global statis-
tics) and, second, a node needs to collect results to estimate some
network or resource metrics, such as relative resource popularities,
which may be useful for the interactions with other nodes (local
statistics).

The component statisticCollector is a simple Omnet++ module
and is used to handle aggregate statistics from the entire network.
Statistics have the following format:

〈statName, variable1, variable2〉,

where statName is the name of the metric (e.g. messages) and vari-
able2 aggregates and describes measurements when variable1 has
a certain value; for example, if statName is used to count messages,
and variable1 stores the time-to-live (TTL) value, variable2 counts
the total number of messages for this particular TTL.

For the collection of local statistics, we constructed a localStatis-
tics class, which is included in the node component. It uses the same
format as the global statistics module.

4 Simulation Study and Discussion

For a search performance simulation study, one has only to de-
fine (via configuration parameters) the desirable search policy, the
network structure and the replication strategy. When the simula-
tion sessions finish, the globally collected statistics (statisticCollec-
tor module) are used to assess the search performance.

A sample simulation study is presented here and constitutes a
comparison of the performance of various search strategies on dif-
ferent topologies. We measure the performance using three metrics:

• The probability of success, which measures the probability that
a query can locate the desired resource, given a TTL hop limit.
A query is considered successful if it discovers at least one
replica of the resource in question.



Table 1. Simulation parameters for static networks
graph parameter nodes ri flood mBFS ARPS
ER d = 6 25000 30 pf = 1 pf = 0.5 pf = 0.8
BA m = 2 10000 15 pf = 1 pf = 0.5 pf = 0.8

• The total number of messages that are transmitted, before the
resource is located.

• The number of duplicate messages. A message is considered
duplicate, or redundant, if it is received by the same node more
than once (and thus does not contribute to the success of the
search). It serves as a measure of the how efficiently a policy
utilizes the network resources.

We compare four flooding-based searching policies, namely
plain flooding (flood), modified BFS (mBFS), Adaptive Resource-
based Probabilistic Search (ARPS) and APF. All strategies oper-
ate under a (variable) TTL hop limit. For the last three strategies,
the forwarding probabilities (pf ) follow the corresponding authors’
guidelines. In particular, in mBFS the query is forwarded to 50% of
a node neighors (pf = 0.5), while a value of pf = 0.8 is used for
ARPS. For plain flooding pf = 1, effectively contacting all neigh-
bors in every case. The forwarding probabilities of APF involve
a different calculation in each node [15]. All the search policies
utilize the pastQueriesBuffer mechanism, with a capacity of 100
queries, for reducing the number of redundant messages.

The two topologies we base our study on are the classical Erdős-
Rényi (ER) random graphs and Barabási (BA) power-law graphs.
The Erdős-Rényi network is formed on N nodes and each pair of
node is connected by an edge with probabilty p ∈ (0, 1). The ex-
pected average degree (d) is given by d = pN .

The Barabási network begins with m0 connected nodes. Each
newly inserted node gets connected to m existing nodes.

We initially consider static networks, which means that after the
topology is formed, no other nodes enter or leave the network. We
use the uniform allocation and distribution policy. A predefined
number of replicas (ri) for each resource are randomly uniformly
placed on the nodes, where the value of ri is same for all resources
i. Each node may submit a query until a maximum total number
is reached. For these of experiments the total number of queries
was limited to 1000. The simulation parameters are summarized in
Table 1.

The simulation results are shown in Fig. 5–6. The figures plot
both the probability of success and the number of duplicate mes-
sages. For the particular configuration we have chosen, all search
strategies are successful at locating the required resources, as long
as TTL has a value of 3 or more. The mBFS strategy requires at
least 5 steps, while ARPS needs at least 4 hops in the power-law
network. The efficiency of the strategies shows up vividly in the
number of duplicate messages. While mBFS is slower to discover
the resources, it also produces less redundant traffic, in both net-
works. ARPS, on the other hand, seems to behave almost like plain
flooding in the ER network; it seems slower but more efficient in the
BA case. Notice that in the Barabási network (Fig. 6), we simulated
only the three of the search policies, as APF requires some network
metrics (in particular the average node degree at a given distance
from the query initiator) that are not known analytically known in

Table 2. Simulation parameters for dynamic net-
works

churn distr. ER (d = 6, ri = 25) BA (m = 2, ri = 15)
ND µ = 4h, σ = µ/3 µ = 4h, σ = µ/3
WD a = 4h, b = 0.5 a = 4h, b = 0.5

power-law networks. In the ER case, however, the APF protocol
achieves the lowest number of duplicate messages.

We next consider dynamic networks. Churn is the continuous
process of node arrival to and departure from the network [21]. A
node participates in the system for a certain time period, called the
node lifetime, which is the elapsed time from the first appearing in
the system until its permanent departure. For modeling lifetime, any
predefined Omnet++ distribution can be used. For this set of exper-
iments, we chose two of the most commonly used lifetime distri-
butions when studying complex networks: the Normal distribution
(ND), with a mean (µ) and standard deviation (σ) parameters and
the Weibull distribution (WD) with parameters a and b. For all of
them we set the same mean (µ = 4 hours). We consider Poisson ar-
rivals. For the ER network with 5.000 initial nodes, the node arrival
rate of 1/λ = 4 sec was used, while the BA network started with
10.000 nodes, and used 1/λ = 2sec. As in the static case, we use
the uniform allocation and distribution policy and we simulated up
to a total of 1000 submitted queries. The simulation parameters for
the dynamic case are summarized in Table 2.

For the dynamic case we only consider the plain flooding search
strategy here. The performance measurements are illustrated in
Fig. 7–8. On the left side of the figures, we show the evolution
of the network for the first 100 sec of simulation time, while churn
is in effect, as a function of time t. For this specific scenario, the
curves in both networks have approximately the same shape. For
the first few hops the Weibull distribution results in a larger number
of total messages than the Normal distribution; after that the oppo-
site is observed, which can be probably explained by the fact that
the particular Weibull distribution results in a large number of node
removals.

Also, the curves highlight the differences among the two lifetime
distributions during network evolution. For this particular search
strategy, the results indicate that churn has only slight impact in BA
and in ER networks.

5 Conclusion

We introduce Armonia, a unique flexible simulator framework
that can be used to model dynamic interactions of nodes in complex
networks. It offers a topology component for specifying the net-
work structure, a resource and replication component for modeling
the overall distribution of resources on the nodes of the network,
a search component for specifying the algorithm used to locate re-
sources, and a statistics component for gathering useful measure-
ments. It is the first general-purpose framework of its kind. Our aim
is to use Armonia to study the behavior of various search strategies
in complex networks with churn, where nodes may join or leave the
network dynamically. We have focused on probabilistic flooding
strategies, although other search policies can be implemented effi-
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Figure 5. Probability of success (left) and duplicate messages (right) in an Erdos Renyi network of 25,000 nodes,
with d = 6 and r = 30.
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Figure 6. Probability of success (left) and duplicate messages (right) in a Barabási power-law network of 10,000
nodes, with m = 2 and r = 15.

ciently. Currently, we optimize our framework, while also adding
new topologies and search strategies. Armonia will be available as
an open-source project which we hope will serve the research com-
munity, as a useful simulation tool.
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