
The original publication is available at ieeexplore.ieee.com 1

A General-Purpose Mapper Module for Adaptive OpenMP Runtime
Support

Ilias K. Kasmeridis
Dept. of Computer Science and Engineering

University of Ioannina
Ioannina, Greece

ikasmeridis@cse.uoi.gr

Vassilios V. Dimakopoulos
Dept. of Computer Science and Engineering

University of Ioannina
Ioannina, Greece

dimako@cse.uoi.gr

Abstract

The latest versions of the OpenMP specifications have in-
troduced constructs that enable programmers to utilize het-
erogeneous compute units alongside the main multicore
CPU. They allow offloading specific regions of the program
code to any of the available computational devices; the of-
floaded code may itself generate parallelism by employ-
ing suitable OpenMP constructs. While the concept seems
ideal, co-processors and accelerators, especially embedded
ones, often have limited resources or capabilities to provide
efficient OpenMP support. Designing an OpenMP infras-
tructure for such devices can be a real challenge. A very ef-
fective solution has been proposed in the form of compiler-
assisted, adaptive runtime support that is tailored to each
specific application. In this work, we present a general-
purpose mapper module, which has the ability to select the
best runtime configuration given a) a set of metrics that pro-
file the application and are obtained by compile-time anal-
ysis and b) a set of device-specific decision rules, which an
implementor provides for a device, written in a customized
language.

1 Introduction

Current computing systems are heterogeneous, with dif-
ferent processor and memory hierarchies co-existing in a
single system. Following the trend of increasing computa-
tional power and multitasking capabilities, embedded sys-
tems have started to adopt similar organizations. However,
the exploitation of the computation resources of each of
the subsystems places significant effort on the program-
mers side. Low-level SDKs are employed to utilize specific
hardware units, which usually entail restructuring portions
of the application codes and, inevitably, increasing com-
plexity.

Targeting heterogeneous systems, the OpenMP API [16]
was recently augmented with directives that allow pro-
grammers to take advantage of the underlying system struc-
ture without resorting to low-level facilities. These direc-

tives manage the offloading of portions of the program code
(known as kernels) from the main CPU onto any computa-
tional unit available, such as GPUs and accelerators, gener-
ically called devices. It is worth noting that the application
source code remains unified, mixing the host CPU and de-
vice parts in an seamless fashion.

According to OpenMP specifications, kernels offloaded
to any device may include OpenMP directives, exploit-
ing multiple processing elements which may be available
within the device. Consequently, each device must pro-
vide runtime support for OpenMP functionality. This, how-
ever, can be inefficient or even infeasible, especially in de-
vices with limited resources; embedded multicores or mul-
ticore systems-on-chip are characteristic examples of de-
vices with limited on-chip memory. The system designer
thus faces the choice of whether to support OpenMP fully
(albeit inefficiently) or partially (limiting program expres-
siveness and functionality).

In a previous work [2] we proposed a novel solution to
the above problem. The concept is to provide compiler-
assisted, adaptive OpenMP runtime support, tailored to
each different kernel: kernels that make limited use of
OpenMP directives maybe be accompanied by a small and
fast OpenMP runtime infrastructure; more complex ker-
nels can also be accommodated, albeit with possibly less
efficient runtime support, depending on the available re-
sources. Compiler analysis is employed in order to discover
the level of OpenMP support required by each kernel; an
appropriate runtime infrastructure should then be chosen to
support optimally a particular kernel.

This work consummates our proposal by introducing a
device-agnostic mapper module. The mapper is responsi-
ble for collecting the compiler metrics and making an au-
tomated decision about the optimal runtime configuration
to provide the required OpenMP functionality to a kernel.
Instead of implementing one runtime system for support-
ing OpenMP on a device, a multitude of runtime libraries
(termed flavors) exist, each one implementing a specific
subset of OpenMP functionality. Given the compiler analy-
sis for a particular kernel, the role of the mapper is to select
the most appropriate among the available runtime flavors.

https://doi.org/10.1109/SEEDA-CECNSM.2019.8908491

Since such an action requires knowledge about the flavor
features, the mapper is equipped with a flavor-selection lan-
guage called MAL. Based on MAL, the device designer
can describe the selection logic among the different flavors
through a set of rules.

The rest of the paper is organized as follows. Section 2
gives a brief introduction to the device-related features
of OpenMP. Section 3 summarizes the compiler-assisted,
adaptive runtime support mechanism. Section 4 presents
the concept of the mapper module and details its design;
a case study is given in Section 5. Finally, Section 6 con-
cludes this work.

1.1 Related Work
Devices were added to OpenMP in V4.0 of its specifica-
tions but OpenMP was considered as a possible program-
ming model for accelerators or multicore embedded sys-
tems much earlier [7, 8, 13]. These works, however, re-
fer to older versions of the standard and, most importantly,
do not address heterogeneity. In [3] Agathos et al present
an implementation of OpenMP on the STHORM accelera-
tor. The innovative feature of their design is the deploy-
ment of the OpenMP model both at the host and the fabric
sides in a seamless way, providing an interface similar to
the device model of OpenMP V4.0 for offloading and ex-
ecuting OpenMP kernels on the MPSoC. Other directive-
based efforts to offload kernel onto attached devices include
OmpSs [12] and HMPP [11]. None of these works supports
OpenMP functionality in the offloaded code.

While OpenMP specifications have recently reached
V5.0, device support remains limited; there exist relatively
few compilers supporting relatively few device types. The
offloading process of the Intel compiler is described in [15],
targeting the Xeon Phi coprocessor. Similarly, [5, 9] tar-
get NVIDIA GPUs, through HOMP, a prototype based on
the ROSE compiler, and the LLVM compiler, correspond-
ingly. In [14] the authors present their implementation of
OpenMP 4.0 on a TI Keystone II, where they use the DSP
cores as devices to offload code to. Finally, Agathos et
al [4] propose an implementation of OpenMP device direc-
tives on the Parallella [1] board, which consists of a dual-
core ARM processor and a 16-core Epiphany co-processor.
In contrast to the above works which provide either partial
OpenMP runtime support or a monolithic full implementa-
tion, our proposal utilizes compiler-assisted, adaptive run-
time system configurations.

2 OpenMP Devices
Starting with version 4.0, OpenMP [16] offers a platform-
agnostic model for heterogeneous parallel programming.
The programmer can offload arbitrary portions of the appli-
cation code to any available device. All the low-level de-
tails related to data and code transfers are orchestrated by

the compiler and implemented by device-specific runtime
libraries. The host processor (i.e. the main CPU) executes
the application code until a device-related construct is met,
whereby execution is switched to a specified device, by cre-
ating a new data environment and offloading the associated
portion of code to the corresponding compute unit.

The target directive is used to mark the code region
(kernel) which will get offloaded, along with its data en-
vironment. The latter is defined through map clauses and
can be manipulated with further directives such as target
data, target update, declare target and oth-
ers.

A key feature of offloaded kernels is that they may em-
ploy unrestricted OpenMP functionality, with the exception
of offloading code to other devices. Parallelism-generating,
tasking and worksharing constructs such as parallel,
task, for, etc. can all exist within a target region.
This flexibility makes OpenMP a very powerful parallel
programming model, taking advantage of all available com-
pute resources of a heterogeneous system in a intuitive and
efficient manner. Ideally any OpenMP program originally
written for a shared memory system, can easily offload
some of its computationally intensive parts onto specialized
hardware.

The aforementioned functionality is possible only if the
devices themselves offer complete OpenMP support. How-
ever, while OpenMP was originally designed for systems
with abundant resources, embedded or attached accelera-
tors have different architectures and are designed to serve
different purposes. With some notable exceptions such as
the Xeon Phi accelerator [15], a common characteristic of
the various types of co-processors is that they offer a lim-
ited amount of resources. Hence, the challenges posed
when implementing an OpenMP runtime system (RTS) for
such devices depend on these resource limitations. Ar-
guably, one of the most important limitations is the size
of the available memory; small private or shared memo-
ries at the co-processor cores impose restrictions regard-
ing the kernel executable size and/or the actual applica-
tion data. This is particularly pronounced in the absence
of a fast global memory; the kernel code has to include the
OpenMP RTS, further limiting the available memory space.
The Epiphany accelerator used in the Parallella [1] board
is an example of an embedded accelerator with severely
limited memory resources; each core is equipped with just
32KiB of fast local memory. While it can also access a
larger 32MiB memory shared with the host processor, its
access times are almost an order of magnitude larger.

As a consequence, a common approach is to provide only
partial OpenMP support on a device with limited resources
[8,9,14], i.e. implement a subset of the API. Clearly, partial
support reduces expressiveness; the application code may
have to be redesigned to match the availability of OpenMP
constructs, which also reduces code portability. Some com-
pilers (e.g. GCC) strive to support OpenMP fully on the
device side, providing a powerful, high level parallel pro-

2

Figure 1: Toolchain process for adaptive runtime support.

gramming abstraction. Nevertheless, the design of a com-
plete OpenMP RTS is not a trivial task for arbitrary devices.
Furthermore, hardware limitations may lead to poor perfor-
mance for some of the OpenMP constructs [4, 5, 9].

3 Compiler-Assisted Adaptive Run-
time Support

In this section, we give an overview of the concept of a
compiler-assisted adaptive runtime support mechanism for
devices [2]. The main idea is to depart from the com-
mon practice of having a fixed runtime library to support
OpenMP on the device side; customized, adaptive runtime
libraries should be selected, tailored to the requirements of
the kernels. For this to work, compiler assistance is re-
quired in order to determine the actual needs of every ker-
nel.

The mechanism is depicted in Fig. 1. The application
code is fed to the compiler which performs the necessary
transformations. Out of the unified application code, code
generation produces code for the host, while target re-
gions produce code (kernels) for the devices. For each
kernel, one of the alternative runtime libraries (called fla-
vors) is selected and along with the kernel itself forms the
final kernel executable, using device-specific compilation
and linking tools.

In order for the above to work, knowledge about the ker-
nel characteristics is necessary, so as to determine the level
of required OpenMP support. Consequently, the first phase
of the mechanism consists of detailed kernel analysis. An
OpenMP kernel is a block of code enclosed lexically within
a target construct. The actual kernel region includes any
code in called routines. Such routines are defined within
declare target constructs and are offloaded with the
kernel. The compiler has thus access to the whole kernel
region and can employ inter-procedural analysis in order
to analyze the entire dynamic extend of the kernel. It first
builds the call graph of the kernel and then visits each of the
called routines. The compiler can then extract information
about the employed OpenMP constructs (if any), and thus
determine the actual OpenMP functionality that is neces-

sary for the execution of each particular kernel. More often
than not, a given kernel will not require the entire OpenMP
functionality but a rather small portion of it. Given this in-
formation, the offloaded kernel can be accompanied by a
suitable subset of the OpenMP runtime library, potentially
decreasing the total offloaded footprint.

Given the analysis results, the second phase of the mech-
anism chooses the most appropriate device runtime flavor,
i.e. the RTS library alternative which is to be linked with the
kernel code and provide the required OpenMP support. For
example, an optimized flavor may support just the needed
constructs, offering the smallest possible footprint, and thus
benefiting co-processor cases with small amounts of local
memory. The runtime flavors could be a fixed set of pre-
compiled libraries, selected to address specific classes of
applications, as derived from typical use-case scenarios.
Another possibility is to have on-the-fly parameterizable li-
braries. Because the default values of the runtime parame-
ters may not suit all applications, tuning some parameters
according to kernel characteristics and building different li-
brary variants can prove beneficial.

The module that brings it all together, and is responsible
for collecting the compiler analysis results and selecting the
runtime flavor to employ is the mapper. The mapper should
choose the most appropriate flavor so as to minimize the
offered OpenMP functionality while at same time cover all
kernel OpenMP requirements.

3.1 Implementation in the OMPi Compiler
In [2], an initial version of the mechanism was im-
plemented in the context of the OMPi compiler [10],
a lightweight OpenMP C infrastructure, composed of a
source-to-source translator and a flexible, modular RTS.
The compiler takes as input C code with OpenMP direc-
tives, and after the pre-processing and transformation steps,
it outputs a multi-threaded C file for executing on the host
and another set of intermediate files, one for each kernel.
Every intermediate file is augmented with calls to the RTS
of the corresponding device. In the last stage, the interme-
diate files are compiled with the appropriate system com-
pilers in order to provide the final executables.

The compiler was modified to perform the required ker-
nel analysis. It operates at the abstract syntax tree level and
produces the metrics below as the result of the analysis:

• The total number of OpenMP constructs.

• The number of parallel, for, sections,
single and task constructs.

• The number of explicit barrier directives.

• The maximum level of parallelism.

As a first and important contribution of the current work,
we extended the analysis scope of the compiler, and we
now offer the following additional metrics:

3

• The total number of reduction clauses.

• The total number of ordered directives.

• The total number of atomic directives.

• The total number of nowait clauses.

• The loop schedules used, through schedule clauses.

• Whether explicit locking is employed or not; this is
based on detecting calls to the corresponding OpenMP
runtime routines.

• Whether any Internal Control Variables (ICVs) are ac-
cessed, through OpenMP runtime calls.

The prototype in [2] did not implement a general mapper
module; there was only support for one specific device, and
a fixed set of runtime flavors. The selection was based on a
hard-coded logic that was only applicable to that particular
device and those particular runtime flavors. In this work, as
our second and most important contribution, we present the
design of a general, novel mapper module, which works for
arbitrary devices and arbitrary runtime flavors.

4 A General, Device-Agnostic Map-
per

In this section we introduce a general mapper design which
is able to accommodate any device and any set of runtime
flavors. To make the discussion concrete, we have also
implemented a fully working mapper module in the OMPi
compilation chain. As shown in Fig. 1, the mapper has a
central role in the proposed mechanism. In particular, for
each kernel, the mapper must:

• Collect the metrics which resulted from the kernel
analysis performed by the compiler.

• Keep information about the set of available runtime
flavors for each device.

• Decide which flavor is the most appropriate for the
given kernel, and a specific device.

In other words, given a kernel and a device, the mapper
must map the metrics to the best available runtime flavor.

Since OMPi is a source-to-source compiler, the kernel
code generation produces source code files, ready to be
compiled and linked by device-specific tools. We pass the
metrics from the compiler to the mapper by embedding
them as comments at the top of the output kernel files. All
metrics presented in Section 3 get enlisted following a sim-
ple key-value format, one metric per line. The mapper gath-
ers the metrics simply by parsing the top-section comment
block of the kernel code.

Because different devices may have different sets of run-
time flavors with different levels of OpenMP support, there

Start

OpenMP? Only
Parallel?

Only Parallel +
Reduction?

Explicit
tasks?

nowait
regions?

only
single?

NoOMP Full

NoNo

Yes

No

Yes No

ParallelOnly ParallelReduction

Yes Yes

Yes
SingleTasksBlockingOnly

No

Yes

No

Figure 2: Decision flowchart example

does not exist a single set of rules that always gives the opti-
mum mapping. Hence, the conception of a mapper with an
intelligent, always-optimum selection algorithm is rather
pointless. As a result, we chose to design a general mapper
module that can accommodate device-specific selection. In
other words, one has to instruct the mapper how to make
the optimum flavor choice based on the analysis metrics,
for each distinct device.

For each device, the mapper must be aware of the set
of available flavors. In addition, it must be able to make
an intelligent decision among them for each kernel. In our
system, the decision logic is delegated to the device de-
veloper; she is the one that specifies how to find the best
runtime flavor based on the kernel metrics. The decision
process should be encoded as a set of rules which check
specific metrics and wind up to the correct optimal choice.
The mapper, consequently, is given a set of decision rules;
it chains them using the compiler metrics until it reaches a
final flavor decision.

The selection process can be represented by a flowchart,
such as the one given in Fig. 2 (details below). Decision
nodes (diamonds) query some kernel metric and based on
its value, transfer the process to other nodes, until a flavor
node is reached (rectangle) and that specific flavor is cho-
sen as the most appropriate. The device developer provides
such a decision flowchart for her device. The mapper is,
then, responsible for traversing it for every kernel, using
the kernel’s metrics to navigate among the decision nodes.

4.1 Mapper Language
In order for the device developer to specify the decision
rules and the mapper to utilize them, we designed a custom
language for rule files, called MAL. Its syntax is simple and
generic, allowing decisions based on exported metrics.

The syntax of a MAL rule file is quite familiar, similar
to JSON or Python lists and dictionaries. The file consists
of two components. The first one, flavors, is a list of all
the available runtime flavors for the device in question. The
second component, nodes, is a list of rules that concern
the gathered metrics and represent the decisions. Specifi-
cally, each rule follows a dictionary syntax and consists of:

1. A query statement related to a specific metric. Avail-
able queries are: has, hasonly and num. Queries

4

The available runtime flavors
flavors = [

NoOMP, ParallelOnly, ParallelReduction,
BlockingOnly, SingleTasks, Full

],
Decision nodesure
nodes = [

checkomp = { has(openmp),
true: checktasks,
false: NoOMP },

checktasks = { num(task),
> 0: checknowait,
= 0: checkparall },

checknowait = { has(nowait),
true: Full,
false: checksingle },

checksingle = { hasonly(tasks,single),
true: SingleTasks,
false: BlockingOnly },

checkparall = { hasonly(parallel),
true: ParallelOnly,
false: checkreduct },

checkreduct = { hasonly(parallel,reduction),
true: ParallelReduction,
false: Full }

]

Figure 3: A MAL rule file for the flowchart in Fig. 2.

are in the form of one-parameter functions. A has
(hasonly) query checks whether (only) the speci-
fied metric exists in the analysis results; hence the out-
come can be either true or false. For a num query,
the outcome is an integer representing the value of the
specified metric.

2. A set of adjacent (follow-up) rules, conditioned on the
result of the query statement. The condition is either
the truth status of the has/hasonly query or a com-
parison which involves a relational operator and an in-
teger for num queries. The outcome of the query is
compared to the integer through the relational operator
and if the condition holds, the corresponding follow-
up rule is scheduled to be checked next.

The MAL grammar can be easily understood through the
example rule file in Fig. 3, which represents the decision
flowchart of Fig. 2. Anything after a hash (#) is considered
a comment and the rest of the line is ignored.

In the example, there exist 6 different runtime flavors,
named NoOMP, Full, BlockingOnly, SingleTasks, Paral-
lelReduction and ParallelOnly. The first should be utilized
if a kernel makes no use of OpenMP functionality while the
second one is for kernels which embed complex OpenMP
constructs. A common case is to only utilize a parallel
construct with or without reduction clauses, giving rise
to the last two optimized flavors. The SingleTasks flavor
tries to capture task-based parallelism where a single thread
creates all the tasks, while BlockingOnly fits the rest of the
cases.

The flavors are shown as green rectangles in Fig. 2 and
are declared in the top flavors section in the rule file
(Fig. 3). The decision logic is given in the nodes section
of the rule file and correspond to the diamond nodes in the
flowchart. The starting node is the first one listed, hence the
decision process always begins with the checkomp node.

file.c
(C + OpenMP)

Preprocessor file.pc Transformer

file_d1.c

file_dn.c

file_ompi.c

Device
Compiler &

Linker

Host Compiler
& Linker

file_d1

file_dn

a.out

... ...

Device
runtime
libraries

Host runtime
libraries

(host code)

(kernel)

(kernel)

Figure 4: OMPi compilation chain.

The node consists of a query statement (has(openmp))
which queries the “openmp” analysis metric that indicates
whether the kernel utilizes OpenMP at all. If the outcome
is true, the next node to be visited is node checktasks; other-
wise the next node is NoOMP which happens to be a flavor
node, terminating the decision process and promoting it as
the most suitable flavor.

If the checktasks node is visited, the query num(task)
checks how many task regions are present in the kernel;
if none exists, there is a transfer to the checkparall node
which may lead to lighter runtime flavors. For example,
if parallel is the only OpenMP construct present, then
a flavor that provides support only for creating a team of
threads is the optimal choice (ParallelOnly).

4.2 Implementation Details

The MAL grammar, is simple enough to allow for recursive-
descent parsing. After a MAL rule file for a specific device
gets parsed, it is stored internally as a graph using an ad-
jacency list representation. This internal graph is traversed
every time the mapper has to decide on the most suitable
flavor for a kernel that targets this particular device.

The implementation of the mapper has been integrated
within the OMPi [10] compilation chain, which is shown
in Fig. 4. OMPi consists of a source-to-source compiler
(transformer) and a sophisticated runtime support system.
After the syntax analysis stage, the application source code
is stored using an abstract syntax tree representation. All
transformation steps as well as the kernel analysis we de-
scribed previously operate on the abstract syntax tree. The
code generation phase, then, produces intermediate files,
ready to be compiled by the host/device system compiler.
The final step utilizes, again, system tools to link the host
and kernel program with the required runtime libraries,
yielding the final executables.

Based on Fig. 1, in order to deploy the mapper module
it was necessary to modify the last stage in the OMPi com-
pilation chain. In particular, the intermediate kernel files
are fed to the mapper before given to the device compilers;
the mapper is then able to traverse the decision rules for
each kernel and each requested device, and select the most

5

appropriate runtime flavor, based on the embedded kernel
metrics. This flavor is given to the device linker to link
against the kernel file.

5 A Case Study
To demonstrate our mechanism we use Parallella [1], a pop-
ular 18-core credit card-sized computer with two process-
ing modules; the main CPU, a dual-core ARM Cortex A9
(built within a Zynq 7010 SoC), and an Epiphany-III 16-
core CPU which is used as a co-processor. The ARM and
the Epiphany use a 32 MiB portion of the system RAM as
shared memory. The Epiphany-III chip contains a 4 × 4
mesh of cores. Each Epiphany core (eCORE) is a 32-bit
superscalar RISC processor, capable of performing single-
precision floating point operations, and owns 1 MiB of the
total chip address space, which is addressable by all cores.
However it comes with just 32 KiB of fast local scratch-
pad memory. All memories are available through regular
load/store instructions by all eCOREs.

OMPi is the first compiler to support the Epiphany accel-
erator as an OpenMP device [4]. The limited local memory
of the device cores makes it impossible to fit sophisticated
OpenMP RTS structures alongside the application data. The
original RTS was carefully designed so as to minimize its
memory footprint, while supporting OpenMP fully (albeit
inefficiently, using the much slower shared memory region
for key structures). In [2] this original (Full) RTS was used
as a basis for a set of 12 different RTSs, each one optimized
for a certain type of kernels. Each flavor is a modified ver-
sion of the original, trimmed to support a limited number
of constructs. For each flavor all unnecessary internal data
structures were removed and all routines were modified ac-
cordingly.

Fig. 5 contains the decision flowchart for the 12 flavors.
Our first action was to encode the flowchart as a rule file us-
ing MAL; this resulted in 190 lines of code, which was used
to automate the mapper decisions. Our next concern was
to demonstrate that the mapper did indeed succeed to reach
the optimal decisions. We used the same set of applications
as in [2] which included the EPCC microbenchmarks [6], as
well as other applications such as the calculation of π, the
calculation of all solutions of the N-queens problem, and
the well-knwon Game of Life, which simulates an evolu-
tion process.

For a trivial application with an empty kernel, the map-
per chose the NoOpenMP flavor, due to the absence of
OpenMP instructions. The π calculation performs numer-
ical integration based on the trapezoidal rule and uses a
parallel team, with threads summing their partial results
using a reduction clause. Therefore, the automatically se-
lected flavor was ParallelReduction. To solve the N-queens
problem, parallel and tasks directives are used, so
the mapper has determined that the appropriate version is
TasksNoICVs. The Game of Life uses only parallel and

Table 1: Executable kernel sizes (bytes)
Application Full RTS Adaptive RTS Reduction
Empty kernel 8648 2252 73,95%
Pi 12744 8864 30,44%
Nqueens 20908 19148 8,41%
Game of life 15412 11320 26,55%
EPCC-Barrier 12316 8268 32,86%
EPCC-Ordered 14704 10992 25,24%
EPCC-Critical 13184 9420 28,54%
EPCC-Static For 14744 10992 25,44%
EPCC-Single 12768 8944 29,94%

for constructs with barrier synchronization, so the most
suitable flavor is ForStatic. Each of the EPCC tests utilizes
a parallel region and one specific construct. The mapper
successfully mapped the appropriate flavor for each one of
them.

Table 1 (in agreement with [2]) demonstrates the bene-
fits of our scheme. For each of the applications we report
the final size of the kernel object file after the appropriate
flavor was chosen by the mapper and got linked in. We also
report the size without activating the mechanism, i.e. sim-
ply utilizing the original (Full) runtime library. It can be
easily seen that the reductions are quite significant in every
case.

6 Conclusions
In this work we present a novel mapper module, a central
piece that completes the idea of compiler-assisted adaptive
OpenMP runtime support. The mapper has the ability to au-
tomatically select among different runtime library flavors
to accompany a kernel, given a set of metrics that profile
the application and are obtained by compile-time analysis,
and a set of device-specific decision rules which an imple-
mentor provides for a device. For the latter, we introduce
a custom language (MAL) that is able to capture the logic
of a decision flow diagram using a concise syntax. The
mechanism is general and applicable to any OpenMP de-
vice. We are working in expanding the expressiveness of
MAL, adding support for more devices, and examining the
possibility of parametrized flavors, where parts of a flavor
can be tuned at compile time.

References
[1] Adapteva, “Parallella Reference Manual,” Sept. 2014.

[2] S. N. Agathos and V. V. Dimakopoulos, “Adaptive
OpenMP Runtime System for Embedded Multicores,”
in 16th Int’l Conference on Embedded and Ubiquitous
Computing (EUC-2018), Bucharest, Romania, Oct.
2018, pp. 174–181.

[3] S. N. Agathos, V. V. Dimakopoulos, A. Mourelis,
and A. Papadogiannakis, “Deploying OpenMP on
an embedded multicore accelerator,” in Proc. of

6

Figure 5: The full decision flowchart of the case study.

SAMOS’13, 13th Int’l Conf. on Embedded Computer
Systems: Architectures, MOdeling and Simulation,
Samos, Greece, Jul. 2013, pp. 180–187.

[4] S. N. Agathos, A. Papadogiannakis, and V. V. Di-
makopoulos, “Targeting the Parallella,” in Proc. of
Euro-Par 2015, 21st Int’l European Conf. on Paral-
lel and Distributed Computing, Vienna, Austria, Aug.
2015, pp. 662–674.

[5] C. Bertolli et al, “Coordinating GPU Threads for
OpenMP 4.0 in LLVM,” in Proc. of LLVM-HPC ’14,
LLVM Compiler Infrastructure in HPC, New Orleans,
Louisiana, Nov. 2014, pp. 12–21.

[6] M. J. Bull, “Measuring Synchronisation and Schedul-
ing Overheads in OpenMP,” in Proc. EWOMP ’99,
the 1st European Workshop on OpenMP, Lund, Swe-
den, Sept. 1999, pp. 99–105.

[7] P. Burgio, G. Tagliavini, A. Marongiu, and L. Benini,
“Enabling Fine-Grained OpenMP Tasking on Tightly-
Coupled Shared Memory Clusters,” in Proc. of DATE
13, Design Automation and Test in Europe, Grenoble,
France, Mar. 2013.

[8] B. Chapman et al, “Implementing OpenMP on a high
performance embedded multicore MPSoC,” in Proc.
of IPDPS ’09, IEEE Int’l Symposium on Parallel and
Distributed Processing, Rome, Italy, May 2009, pp.
1–8.

[9] L. Chunhua, Y. Yonghong, B. R. de Supinski, D. J.
Quinlan, and B. M. Chapman, “Early Experiences
with the OpenMP Accelerator Model.” in Proc. of
IWOMP 2013, 9th Int’l Workshop on OpenMP, Can-
berra, Australia, Sept. 2013, pp. 84–98.

[10] V. V. Dimakopoulos, E. Leontiadis, and G. Tzoumas,
“A portable C compiler for OpenMP V.2.0,” in Proc.
of EWOMP 2003, the 5th European Workshop on
OpenMP, Aachen, Germany, Sept. 2003, pp. 5–11.

[11] R. Dolbeau, S. Bihan, and F. Bodin, “HMPP: A Hy-
brid Multi-core Parallel Programming Environment,”

in Proc. GPGPU 2007, Workshop on General Pur-
pose Processing Using Graphics Processing Units,
Boston, USA, Oct. 2007.

[12] A. Fernández et al, “Task-Based Programming with
OmpSs and Its Application,” in Euro-Par 2014 Inter-
national Workshop, Revised Selected Papers, Part II,
Porto, Portugal, Aug 2014, pp. 602–613.

[13] W.-C. Jeun and S. Ha, “Effective OpenMP Implemen-
tation and Translation For Multiprocessor System-
On-Chip without Using OS,” in Proc. of ASP-DAC
’07, 12th Asia and South Pacific Design Automation
Conf., Yokohama, Japan, Jan. 2007, pp. 44–49.

[14] G. Mitra, E. Stotzer, A. Jayaraj, and A. P. Rendell,
“Implementation and Optimization of the OpenMP
Accelerator Model for the TI Keystone II Architec-
ture,” in Proc. of IWOMP 2014, the 10th Int’l Work-
shop on OpenMP, Salvador, Brazil, Sept. 2014, pp.
202–214.

[15] C. J. Newburn et al, “Offload Compiler Runtime for
the Intel Xeon Phi Coprocessor,” in Proc. of IPDPS
Workshops, 27th IEEE Int’l Parallel and Distributed
Processing Symposium, Boston, USA, May. 2013, pp.
1213–1225.

[16] OpenMP ARB, “OpenMP Application Program Inter-
face V4.5,” Nov. 2015.

7

	Introduction
	Related Work

	OpenMP Devices
	Compiler-Assisted Adaptive Runtime Support
	Implementation in the OMPi Compiler

	A General, Device-Agnostic Mapper
	Mapper Language
	Implementation Details

	A Case Study
	Conclusions

