
All-port Total Exchange in Cartesian Product
Networks

Vassilios V. Dimakopoulos

Dept. of Computer Science, University of Ioannina

P.O. Box 1186, GR-45110 Ioannina, Greece.

Tel: +30-26510-98809, Fax: +30-26510-98890,

E-mail: dimako@cs.uoi.gr

1



All-port Total Exchange in Cartesian Product Networks

Vassilios V. Dimakopoulos

Abstract

We present a general solution to the total exchange communication problem for

any homogeneous multidimensional network under the all-port assumption. More

specifically, we consider cartesian product networks where every dimension is the

same graph (e.g. hypercubes, square meshes, n-ary d-cubes) and where each node

is able to communicate simultaneously with all its neighbors. We show that if we

are given an algorithm for a single n-node dimension which requires T steps, we can

construct an algorithm for d-dimensions and running time of nd−1T steps, which is

provably optimal for many popular topologies. Our scheme, in effect, generalizes

the total exchange algorithm given by Bertsekas et al [1] for the hypercubes and

complements our theory [7] for the single-port model.

Keywords: Collective communications, interconnection networks, cartesian product net-

works, all-port model, total exchange

2



1 Introduction

Multiprocessors with physically distributed memory (as for example the Cray T3D/E, Intel

Paragon, MIT Alewife, SGI Origin 2000 and the recently announced Sandia’s Red Storm

[5]) are built around a node interconnection structure that is mostly based on cartesian

product (or multidimensional) networks such as hypercubes, meshes and tori. Multidimen-

sional networks have been used and studied extensively because of their rich graph-theoretic

properties which are directly derived from the properties of their constituent dimensions.

Because of their symmetric nature homogeneous multidimensional networks traditionally

receive most of the attention. Such a network has all of its dimensions identical, yield-

ing thus a high degree of regularity. Hypercubes, square meshes, n-ary d-cubes are a few

examples of homogeneous multidimensional networks.

As long as nodes communicate through an interconnection network and no common

memory is physically available, information dissemination is a prevailing issue. Apart from

the need for a pair of nodes to exchange information (usually termed ‘unicast’ communi-

cation), information dissemination includes collective communications where a multitude

of nodes are involved. The frequent appearance of such communication patterns especially

in parallel numerical algebra [10, 2] demands efficient communication algorithms and has

spawned a sizeable amount of research. The importance of collective communications is

also evident by their ample inclusion in the Message Passing Interface (MPI) standard.

A general survey on collective communication problems was given in [9], including

single/multinode broadcasting, scattering, gathering and total exchange. Total exchange is

the subject of this work and is known to be the most demanding of all the aforementioned

problems. In total exchange, which is also known as multiscattering or all-to-all personalized

communication, each node in a network has a distinct message to send to every other node.

Thus, in an N -node network every node scatters N − 1 messages destined to each of the

other nodes. Various data permutations occurring e.g. in parallel FFT and basic linear

algebra algorithms can be viewed as instances of the total exchange problem [2].

Solutions to the total exchange problem have been mainly ad hoc, meaning that they

3



apply only to particular topologies, usually hypercubes or two-dimensional tori/meshes, and

even not for arbitrary network sizes (see e.g. [13, 11, 1, 18] for packet-switched networks,

[4, 17, 12, 15, 14, 16] for circuit switched/wormhole-routed networks).

In a previous work [7] we provided a structured solution applicable to any multidimen-

sional network which is packet-switched and adheres to the single-port model. However,

under the all-port model where simultaneous communication will all neighbors is allowed,

an algorithm was only given for two-dimensional homogeneous networks. Here we complete

the theory by presenting a general algorithm that works for any number of dimensions. In

particular, we show that if there exists a total exchange algorithm for an n-node graph

H that takes TH time units, then an algorithm for graph Hd can be constructed that

takes time nd−1TH . Hypercubes and n-ary d-cubes are just two well known examples of

homogeneous networks to which our method applies.

Under the model we follow we only know of few optimal algorithms, the ones developed

in [1, 8] for hypercubes and the optimal or near-optimal ones for n-ary d-cubes in [18].

In fact, our work can be viewed as a generalization of the work of Bertsekas et al [1] to

arbitrary homogeneous multidimensional networks. Although the algorithm is not tied to

any particular switching scheme, as in [1, 7] we will deal with packet-switched networks

under the constant model [9] where:

• communication links are bidirectional and fully duplex

• a message requires one time unit (or step) to be transferred between two nodes

• only adjacent nodes can exchange messages.

The all-port capability will also be assumed where a node may send/receive messages

to/from all its neighbors in a single step. Notice that the packet-switched model is only

assumed for the purposes of the analysis. The derived algorithm works without modifica-

tions for any switching scheme, e.g. circuit switching or wormhole routing. However, in

such cases it may not achieve strict optimality.

4



The rest of the paper is organized as follows. After presenting multidimensional net-

works and some of their properties in Section 1.1, we review the algorithm given by Bert-

sekas et al [1] for the hypercubes in Section 2. In the same section we give the basic idea

behind our generalization. The algorithm, along with its correctness proof, is described

in detail in Section 3. Section 4 gives the conditions under which the proposed algorithm

behaves optimally. Finally, Section 5 concludes the paper.

1.1 Multidimensional networks

Let G = (V,E) be an undirected graph1 with node (or vertex) set V and edge (or link)

set E. This is the usual model for representing a multiprocessor interconnection network:

processors correspond to nodes and communication links correspond to edges in the graph.

The nodes in G are |V | in number, labeled as 0, 1, . . . , |V |−1. An edge in E between nodes

i and j is written as the unordered pair ij and i and j are said to be adjacent to each other,

or just neighbors.

Given d graphs Gk = (Vk, Ek), k = 1, 2, . . . , d, their (cartesian) product is defined as

the graph G = G1 × · · · × Gd = (V,E) whose vertices are labeled by a d-tuple (i1, . . . , id)

and

V =
{

(i1, . . . , id) | 0 ≤ ik ≤ |Vk| − 1, k = 1, . . . , d
}

.

Nodes (i1, . . . , id) and (j1, . . . , jd) are adjacent if and only if

∃k s.t. ikjk ∈ Ek and il = jl for all l 6= k.

We will call such products of graphs multidimensional graphs and Gk will be called the

kth dimension of the product. The kth component of the address tuple of a node will be

called the kth address digit or the kth coordinate. The definition of E above in simple

words states that two nodes are adjacent if they differ in exactly one address digit. Their

differing coordinates should be adjacent in the corresponding dimension. An example is

given in Fig. 1.

1The terms ‘graph’ and ‘network’ are considered synonymous here.

5



Figure 1: A homogeneous two-dimensional mesh

If all dimensions are identical, that is, Gk = H, k = 1, 2, . . . , d, then the network is char-

acterized as homogeneous, and we will denote it at G = Hd. Hypercubes are homogeneous

products of two-node linear arrays (or rings). n-ary d-cubes are homogeneous d-dimensional

products of n-node rings. Homogeneous generalized hypercubes are products of Kn, the

n-node complete graph, [3]. The network in Fig. 1 is a homogeneous two-dimensional mesh.

Multidimensional graphs have |V1||V2| · · · |Vd| nodes, where |Vk| is the number of nodes

in Gk, k = 1, 2, . . . , d. We will assume that graph H has n nodes; consequently the

homogeneous network G = Hd will have nd nodes.

Graph G = Hd can be defined equivalently as the product of two graphs G = B × A,

where A = Hd−1 and B = H. Thus, in this case, which will serve best our purposes here,

a node is labeled as (i, j) where for the first coordinate 0 ≤ i ≤ n − 1 and for the second

one 0 ≤ j ≤ nd−1 − 1. This is illustrated in Fig. 2.

The product B × A can be viewed as n interconnected copies of A. Copy Ai, i =

0, 1, . . . , n − 1, contains all nodes whose first coordinate is equal to i, i.e. nodes (i, · ).

Corresponding nodes in the copies of A are interconnected according to B. Similarly, the

network can be viewed as nd−1 interconnected copies of B, where copy Bj contains nodes

( · , j) (see Fig. 2).

6



Figure 2: A homogeneous three-dimensional mesh

2 Preliminaries

Bertsekas et al [1] presented an optimal total exchange (TE) algorithm for hypercubes

whose operation is shown in Fig. 3. The d-cube is partitioned in two subcubes (Q0 and

Q1) of d − 1 dimensions each. The algorithm consists of three phases. In the first phase,

TEs within the two subcubes are performed. In the second phase every node j of Q0 (Q1)

transfers all its messages for nodes of Q1 (Q0) to the corresponding node j of Q1 (Q0).

In the final phase another internal TE within the two subcubes is performed, concluding

the operation. By appropriately scheduling the transfers, the second phase can overlap

completely in time with the other two phases and thus conclude the operation in the

minimum possible number of steps.

The algorithm of [1] suggests a generalization for any kind of multidimensional network.

In particular, if the network is G = B ×A, where A = Hd−1 and B = H, we may consider

an analogous three-phase algorithm as shown in Fig. 4. However, the second and third

phases are no longer simple; for example, the third phase will have to consist of a series

7



Figure 3: Total exchange in hypercubes

of n − 1 TEs within the n copies of A, each TE distributing messages originating from

one of the n − 1 other copies. What complicates things even more is the second phase.

In the hypercube, a node simply transfers its messages to the unique corresponding node

of the opposite subcube over their unique incident link. In G, however, the corresponding

nodes of each copy of A may no longer be adjacent; they are interconnected according to

B, and the transfers will have to utilize more than one link of B. Given that H can be

any graph, the only systematic way for such transfers is to perform total exchanges within

B. Consequently, the second phase should contain a series of TEs within B in order to

distribute the messages needed for the third phase.

In what follows, we prove that the above generalization is indeed possible by carefully

organizing the TEs of the second and the third phase. Moreover, it is possible to schedule

the message transfers in such a way that phase two can completely overlap in time with

phases one and three, which will be shown to be the best we can do. The outline of the

algorithm is shown in Fig. 5 and, as will be seen, the only assumption is that we already

8



Figure 4: Total exchange in a general multidimensional network

know of a total exchange algorithm for graph H.

3 The algorithm

The algorithm outline in Fig. 5 consists of TEs within the copies of A and B; since A and

B use different links, TE A() and TE B() can indeed be performed physically in parallel

(there will be no link conflicts). Also, the copies of A have no links in common and thus

any TE within a particular copy of A can be performed in parallel with a TE in any other

copy of A. Whenever we say that a TE within A is performed, we will mean that all copies

Ai, i = 0, 1, . . . , n − 1, of A perform internal TEs concurrently. The same goes for the

copies of B.

Phase 1 of the algorithm is given in lines 9–10 and involves one TE within A (“internal”

9



MPTE(Hd) {

1 A = Hd−1, B = H;

2 Do in parallel

3 TE A(), TE B();

}

TE B() {

/* Phase 2 */

4 For t = 1, 2, . . . , nd−1

5 Do in parallel for all Bj , j = 0, 1, . . . , nd−1 − 1

6 TotalExchange in Bj

}

TE A() {

/* Phase 1 */

9 Do in parallel for all Ai, i = 0, 1, . . . , n − 1

10 TotalExchange in Ai: internal messages

/* Phase 3 */

11 For r = 1, . . . , n − 1

12 Do in parallel for all Ai, i = 0, 1, . . . , n − 1

13 TotalExchange in Ai: external messages

}

Figure 5: Outline of the proposed total exchange algorithm

10



messages). Phase 2 is given in lines 4–6 and consists of a series of TEs in B (“transfers”

between the copies of A). Finally, phase 3 is given by a series of n − 1 TEs in A (lines

11–13), where the exchanged messages in each copy have originated at different copies of

A (“external” messages).

During the TE in G, a node must scatter a total of nd−1 messages to all the other nodes

in the network. Exactly nd−1 − 1 messages will be scattered in phase 1 of the algorithm,

within a copy of A. The remaining nd − nd−1 messages will be transfered through the TEs

in B, i.e. through TE B(), before being further forwarded during phase 3. Since B = H, in

every TE within B a node scatters n−1 of its messages. To send all its nd−nd−1 remaining

messages, a total of (nd − nd−1)/(n − 1) = nd−1 exchanges in B are required, hence line 4

in Fig. 5.

What remains is to schedule what messages are exchanged in phases 2 and 3 and show

that phase 2 can indeed overlap in time with the other two phases. Having shown that,

the algorithm MPTE(Hd) in Fig. 5 will be a correct total exchange algorithm for any

multidimensional network G = Hd.

Let us assume that a total exchange algorithm for H requires TH steps, equal to one

time slot. Phase 2 occupies, then, nd−1 slots. In [7] we had derived an algorithm for two-

dimensional networks, following the outline in Fig. 5 and we showed that it requires n×TH

steps, i.e. n slots in total. What we are going to show here is that Fig. 5 works correctly

for d ≥ 2 dimensions and it requires a total of nd−1 slots.

In order to prove what we need, we will use a recursive argument. In particular, we

will assume that the algorithm works for d− 1 dimensions as advertised, and we will show

that it works for d dimensions, too. Thus, phases 1 and 3, which exchange messages within

A = Hd−1, are performed utilizing the algorithm as MPTE(Hd−1). Furthermore, algorithm

MPTE(Hd−1) takes exactly nd−2 time slots.

In summary, we assume that:

• A TE algorithm for H requires 1 time slot (= TH steps).

• The algorithm in Fig. 5 works correctly for d − 1 dimensions, and requires exactly

11



nd−2 slots.

3.1 Scheduling the TEs in B

Since G = B × A, where A = Hd−1 and B = H, a node’s address is written as a tuple

(i, j), where 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ nd−1 − 1. This node belongs to Bj and Ai, i.e. jth

copy of B and the ith copy of A.

Let us focus in a TE within a particular copy of A. It consists of nd−1 nodes and thus

any node will have to scatter nd−1−1 different messages. Isolate one particular node j and

let

D1(j), D2(j), . . . , Dnd−1−1(j)

be the destinations of the scattered messages in the order they depart from node j during

a TE (ties are broken arbitrarily if more than one messages must leave in one step).

During phase 2 of the algorithm messages are exchanged in the first dimension (B) in

order to be further forwarded within the second dimension (A) through the TEs of phase

3. During one TE in phase 3, a node must scatter nd−1 − 1 messages, which will have

been received from phase 2. However, during one TE in B a node scatters and gathers just

n − 1 messages. Hence, in order for a node to collect a set of nd−1 − 1 messages (so as to

participate in one TE of phase 3),

R =
nd−1 − 1

n − 1
(1)

TEs in B are required.

In order for a TE in B to be performed, each node (i, j) must scatter n − 1 messages,

each one to be delivered to one of the other nodes in Bj. Thus, the destinations of the

messages (i, j) is going to scatter must be of the form form (i′, ·), where i′ = 0, 1, . . . , n− 1

and i′ 6= i. Letting ⊕ denote addition modulo n, in any TE in Bj the destinations of the

messages node (i, j) scatters must be:

{(i ⊕ k, · ) | k = 1, 2, . . . , n − 1}.

12



t = 1 t = 2 · · · t = R

(i ⊕ 1, D1(j)) (i ⊕ 1, Dn(j)) (i ⊕ 1, Dnd−1−n+1(j))

(i ⊕ 2, D2(j)) (i ⊕ 2, Dn+1(j)) (i ⊕ 2, Dnd−1−n+2(j))
...

...
...

(i ⊕ (n − 1), Dn−1(j)) (i ⊕ (n − 1), D2n−1(j)) (i ⊕ (n − 1), Dnd−1−1(j))

Table 1: Destinations of node (i, j)’s messages during the first R = (nd−1 − 1)/(n− 1) TEs

of phase 2

Since the purpose of the TEs in B is to provide messages for TEs in A (for phase 3), the

second coordinate of the message destinations must be chosen so as to cover all nodes in A.

In particular, the second coordinate will be chosen according to sequence D(j) described

above.

In Table 1 we give the destinations of the messages that node (i, j) should scatter during

the first R TEs of phase 2. The tth column of the table shows the destinations of messages

scattered during the tth slot. What is important to notice is that:

1. in each column, the messages sent by node (i, j) constitute a perfect set of messages

for a total exchange in Bj

2. after the R slots, every node in Bj will have scattered a total of nd−1 − 1 messages; it

will also have gathered nd−1 − 1 messages which are destined to all other nodes of A.

In conclusion, Table 1 schedules the total exchanges in B so that they provide each node

with a complete set of nd−1 − 1 messages, ready to be distributed in A during the first TE

of phase 3.

A general schedule for any time slot can be derived as follows. Let t−1 = qR+p, where

0 ≤ p ≤ R−1. The set of messages node (i, j) scatters during the tth, t = 1, 2, . . . , nd−1−1,

13



TE in Bj is:

S(i,j)(t) = { m(i,j)(i ⊕ (q + 1), Dpn+1(j)),

m(i,j)(i ⊕ (q + 2), Dpn+2(j)),
...

m(i,j)(i ⊕ (n − 1), Dpn+(n−q−1)(j)),

m(i,j)(i ⊕ 1, Dpn+(n−q)(j)),
...

m(i,j)(i ⊕ q, D(p+1)n−1(j)) }

where the notation m(i,j)(k, l) means the message of node (i, j) destined for node (k, l).

Since the first coordinate of the message destinations are i′ = 0, 1, . . . , n − 1 except i′ = i,

S(i,j)(t) is a legal set of messages for a TE in Bj. Every R such TEs, the node also gathers

nd−1 − 1 messages which are ready for distribution in a subsequent TE within Ai (during

phase 3). What is more important is that it gathers n − 1 messages per TE in Bj , in the

order of D(j), i.e. in the order they are are going to leave during the TE in Ai.

The TEs in B conclude in the final, nd−1th slot; during this TE nodes in Bj exchange

internal messages destined to each other. Node (i, j) sends messages m(i,j)(i
′, j), for all

i′ 6= i.

Summarizing the above discussion, we present the final form of the algorithm in Fig. 6.

Phase 2 starts concurrently with phase 1 and exchanges messages to be distributed through

phase 3, which starts immediately after phase 1. The only thing remaining to be proved

is that phase 2 is able to provide the messages needed by phase 3 on time, so that TE A()

and TE B() can indeed be performed in parallel.

3.2 Correctness

Consider a node j in A and denote by

gd−1(t), t = 1, 2, . . . , nd−2

the number of j’s messages that leave j during slot t (recall that, by assumption, a TE in

A occupies nd−2 slots). Based on the algorithm in Fig. 6 we have the following lemma.

14



MPTE(Hd) {

1 A = Hd−1, B = H;

2 Do in parallel

3 TE A(), TE B();

}

TE B() {

/* Phase 2 */

4 For t = 1, 2, . . . , nd−1 − 1

5 Do in parallel for all Bj , j = 0, 1, . . . , nd−1 − 1

6 TotalExchange in Bj : node (i, j) scatters S(i,j)(t)

7 Do in parallel for all Bj , j = 0, 1, . . . , nd−1 − 1

8 TotalExchange in Bj : internal messages

}

TE A() {

/* Phase 1 */

9 Do in parallel for all Ai, i = 0, 1, . . . , n − 1

10 TotalExchange in Ai: internal messages

/* Phase 3 */

11 For r = 1, . . . , n − 1

12 Do in parallel for all Ai, i = 0, 1, . . . , n − 1

13 TotalExchange in Ai: node (i, j) scatters

messages arriving from Bj

}

Figure 6: The proposed total exchange algorithm in its final form

15



Lemma 1 If gd(t) is the number of node (i, j)’s messages leaving during slot t, then:

gd(t) =























































d(n − 1), t = 1

(d − 1)(n − 1), t = 2, 3, . . . , n
...

2(n − 1), t = nd−3 + 1, nd−3 + 2, . . . , nd−2

(n − 1), t = nd−2 + 1, nd−2 + 2, . . . , nd−1.

Proof. In each TE in B, a node scatters n− 1 of its own messages. Consequently, for the

nd−1 slots of phase 2, the number of own messages leaving a node through dimension B is:

gB
d (t) = n − 1, t = 1, 2, . . . , nd−1.

As seen from Fig. 6, in dimension A, the own messages all leave during phase 1 (phase

3 only distributes foreign messages). Hence, the number of own messages leaving a node

through dimension A is:

gA
d (t) =











gd−1(t), t = 1, 2, . . . , nd−2

0, t = nd−2 + 1, nd−2 + 2, . . . , nd−1.

Thus node (i, j)’s own messages leave it as in:

gd(t) = gA
d (t) + gB

d (t) =











gd−1(t) + n − 1, t = 1, 2, . . . , nd−2

n − 1, t = nd−2 + 1, nd−2 + 2, . . . , nd−1,

which easily leads to the required result, since in graph H, g1(1) = n − 1. 2

Fig. 7 shows graphically the situation for a network with d = 4 dimensions, and n = 3

nodes in each dimension. At the top of the figure, gd−1(t) is illustrated for a TE in A,

which occupies nd−2 = 9 slots. During slot 1 a node scatters 6 of its own messages, in slots

2 and 3 it scatters 4 and in the next 6 slots it scatters 2 (= n − 1) messages according to

Lemma 1.

16



Figure 7: Timing diagram for TE in A = Hd−1 and in G = B × A, where B = H, d = 4

and n = 3

The figure also unfolds the TEs in the two dimensions of G = B × A according to the

proposed algorithm (Fig. 6). Phase 2 contains TEs in B and starts simultaneously with

phase 1. During the first R = (nd−1 − 1)/(n − 1) = 13 slots, messages are distributed so

that they can be further forwarded by the first (r = 1) TE of phase 3. In the next 13 slots

dimension B provides messages needed for the second (r = 2) TE of phase 3. The final TE

in B exchanges internal messages.

What Lemma 1 establishes, if applied to A = Hd−1, is two things: first, at every slot

at least n − 1 messages depart from each node; second, in order for a TE in A to be

performed, not all messages are needed at the beginning. Since messages leave a node in

batches according to gd−1(t), it is seen that in G a TE in phase 3 may commence before all

required messages have been received from the first dimension (B). In fact, we prove next

that B is able to provide all the messages required by A before they are actually needed.

Theorem 1 All messages needed by the rth TE of phase 3, r = 1, 2, . . . , n − 1, will have

arrived on time through the TEs in B.

17



Proof. Since the first nd−2 slots are occupied by phase 1, the rth TE in phase 3 occurs in

the slot interval

(rnd−2, (r + 1)nd−2]

where the notation (x, y] means all slots from x to y not including x, that is slots x + 1,

x + 2, . . . , y. Let EA = (r + 1)nd−2 denote the right end of the interval, i.e. the time the

rth TE in A finishes.

On the other hand, we know that R TEs in B are needed to provide messages for one

TE in A (Eq. (1)). Thus, the messages needed for the rth TE of phase 3 arrive from B in

the interval:

((r − 1)R, rR],

Let EB = rR be the time the last message from B arrives.

First, notice that EB < EA. Indeed,

EB < EA ⇔ r
nd−1 − 1

n − 1
< (r + 1)nd−2

⇔ nd−1 − (r + 1)nd−2 + r > 0. (2)

It can be easily seen that because n, d ≥ 2 the expression nd−1 − (r + 1)nd−2 + r is a

decreasing function of r. Consequently, the minimum occurs for r = n−1, giving the value

n − 1 which is obviously > 0. As a result (2) is always true and hence EB < EA.

We now claim that EB < EA guarantees that all messages needed by the rth TE in

A will have arrived on time. We know that TEs in B provide every node with n − 1

messages at each slot, continuously, to be used by a subsequent total exchange in A. On

the other hand a TE in A consumes, during phase 3, at least n − 1 message per time slot,

continuously, till the end of the TE in G (see Lemma 1).

We will prove our claim by contradiction, that is, we will assume that EB < EA but at

some slot x, A will not have received all the messages it needs. Since, after slot x, A needs

continuously at least n − 1 messages, and B can provide at most n − 1 messages per slot,

B cannot keep up. In other words, there is no slot after x in which A will have all the

messages it needs. But this is a contradiction; due to the fact that EB < EA, the entirety

18



of messages A needs will have been received from B before the last slot. Hence the claim.

2

We have shown that the algorithm in Fig. 6 is a correct TE algorithm for any d-

dimensional network G = Hd. The algorithm, which is recursive in nature, consists of

series of TEs in each dimension. In effect, based on a TE algorithm for network H we have

synthesized a general algorithm for any multidimensional network Hd.

4 Optimality

The time requirements of our algorithm can be calculated in a straightforward manner.

Since a TE in A was assumed to occupy nd−2 slots, it is seen that the n TEs of phase 1

and phase 3, i.e. TE A(), require a total of nd−1 slots. Similarly, TE B() consists of nd−1

TEs in B, each one lasting for 1 slot, thus TE B() also needs nd−1 slots. Since TE A() and

TE B() occur simultaneously, we have the following theorem.

Theorem 2 The proposed algorithm takes nd−1TH steps, where TH is the time needed for

a TE in H.

A lower bound for the total exchange problem can be found as follows. Consider any

network G = (V,E) with N nodes. Every node has to send N − 1 distinct messages, one

for each of the other nodes. Partition the vertex set V arbitrarily in two disjoint sets V1

and V2 such that V1∪V2 = V . Let CV1V2
be the number of edges in E joining the two parts,

i.e. edges ij such that i ∈ V1 and j ∈ V2. Messages from nodes in V1 destined for nodes

in V2 must cross those CV1V2
edges. The total number of such messages is |V1||V2|. Since

only CV1V2
messages are able to pass from V1 to V2 at a time, we obtain the following lower

bound for total exchange time:

TTE ≥
|V1||V2|

CV1V2

. (3)

Theorem 3 Let G = Hd, where d ≥ 2. If total exchange in H can be performed in time

equal to the lower bound of (3) then the same holds for G.

19



Proof. From Theorem 2, total exchange in G requires T = nd−1TH time units, where

n = |VH |. If TH achieves the lower bound in (3) then there exists a partition VH1
, VH2

of the

node set of H such that TH =
|VH1

||VH2
|

CVH1
VH2

, where CVH1
VH2

is the number of links separating

the two parts.

Consider the following partition of V , the node set of G = H × Hd−1:

V1 =
⋃

i∈VH1

(i, ∗)

V2 =
⋃

i∈VH2

(i, ∗),

where ∗ is the don’t-care symbol, taking any value between 0 and nd−1 − 1. Then clearly,

|V1| = |VH1
|nd−1 and |V2| = |VH2

|nd−1. Notice that G contains nd−1 copies of H and that

in order to separate the two parts we only need to disconnect each copy of H by removing

only links in the first dimension. Since CVH1
VH2

links are needed to disconnect each copy

of H, we obtain

CV1V2
= nd−1CVH1

VH2
.

Thus, V1 and V2 is a partition of G such that

|V1||V2|

CV1V2

=
nd−1|VH1

|nd−1|VH2
|

nd−1CVH1
VH2

= nd−1 |VH1
||VH2

|

CVH1
VH2

= nd−1TH ,

which is equal to T , the time needed for total exchange in G. Thus the bound in (3) is

tight for G, too. 2

Summarizing, the algorithm in Fig. 6 is an all-port total exchange algorithm for homo-

geneous networks of dimensionality d ≥ 2. If TE in H can be performed in time equal to

the lower bound of (3) then the proposed algorithm optimally solves the TE problem in

G = Hd. For example, in [6] we gave algorithms that achieve the lower bound in rings.

Consequently, Fig. 6 leads to an optimal total exchange algorithm for homogeneous tori

(k-ary d-cubes).

20



5 Summary

In this paper we studied the total exchange problem in the context of homogeneous multidi-

mensional networks, under the all-port model. The algorithm we derived solves the problem

in any such network and can be seen as a generalization of the algorithm presented in [1]

for hypercubes.

In particular, we proved that a general solution for the problem can be synthesized by

utilizing only a total exchange algorithm designed for one dimension. Moreover, this ap-

proach can yield optimal algorithms for packet-switched networks, given that the algorithm

for the single dimension achieves the lower bound of (3).

The proposed algorithm works for any multidimensional network, including hypercubes,

k-ary n-cubes, generalized hypercubes, etc. For many of these networks our algorithm

behaves optimally since optimal algorithms for simple dimensions are already known in the

literature.

The algorithm, as it is, can be applied to circuit switched and wormhole routed networks

as well. However, it is questionable whether it performs optimally or not in such a context.

Wormhole-routed TE in multidimensional networks is an interesting area of future research

since the known algorithms for this model are restricted to hypercube and mesh topologies.

References

[1] D. P. Bertsekas, C. Ozveren, G. D. Stamoulis, P. Tseng and J. N. Tsitsiklis, “Optimal

communication algorithms for hypercubes,” J. Parallel Distrib. Comput., Vol. 11, pp.

263–275, 1991.

[2] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical

Methods. Englewoods Cliffs, N.J.: Prentice - Hall, 1989.

[3] L. N. Bhuyan and D. P. Agrawal, “Generalized hypercube and hyperbus structures

for a computer network,” IEEE Trans. Comput., Vol. C-33, No. 4, pp. 323–333, Apr.

21



1984.

[4] S. H. Bokhari, “Multiphase complete exchange on a circuit switched hypercube,” in

Proc. 1991 Int’l Conf. Parall. Proc., Aug. 1991, pp. I-525 – I-529.

[5] W. J. Camp and J. L. Tomkins, “The design specification and initial implementation

of the Red Storm architecture,” Sandia National Laboratories, Oct. 2003.

[6] V. V. Dimakopoulos and N. J. Dimopoulos, “Optimal total exchange in linear ar-

rays and rings,” in Proc. ISPAN’94, Int’l Symp. Parall. Arch., Algor. and Networks,

Kanazawa, Japan, Dec. 1994, pp. 230–237.

[7] V. V. Dimakopoulos and N. J. Dimopoulos, “A theory for total exchange in multidi-

mensional interconnection networks,” IEEE Trans. Parall. Distrib. Syst., Vol. 9, No.

7, pp. 639–649, July 1998.

[8] A. Edelman, “Optimal matrix transposition and bit reversal on hypercubes: all-to-all

personalized communication,” J. Parallel Distrib. Comput., Vol. 11, No. 4, pp. 328–

331, 1991.

[9] P. Fraigniaud and E. Lazard, “Methods and problems of communication in usual

networks,” Discrete Appl. Math., Vol. 53, pp. 79–133, 1994.

[10] D. B. Gannon and J. van Rosendale, “On the impact of communication complexity

on the design of parallel numerical algorithms,” IEEE Trans. Comput., Vol. C-33, No.

12, pp. 1180–1194, Dec. 1984.

[11] S. L. Johnsson and C. - T. Ho, “Optimum broadcasting and personalized communica-

tion in hypercubes,” IEEE Trans. Comput., Vol. 38, No. 9, pp. 1249–1268, 1989.

[12] C. C. Lam, C. - H. Huang and P. Sadayappan, “Optimal algorithms for all-to-all

personalized communication on rings and two dimensional tori,” J. Parallel Distrib.

Comput., Vol. 43, pp. 3–13, 1997.

22



[13] Y. Saad and M. H. Schultz, “Data communications in hypercubes,” J. Parallel Distrib.

Comput., Vol. 6, pp. 115–135, 1989.

[14] Y. - J. Suh and K. G. Shin, “All-to-all personalized communication in multidimensional

torus and mesh networks,” IEEE Trans. Parall. Distrib. Syst., Vol. 12, No. 1, pp. 38–

59, Jan. 2001.

[15] Y. - J. Suh and S. Yalamanchili, “All-to-all communication with minimum start-up

costs in 2D/3D tori and meshes,” IEEE Trans. Parall. Distrib. Syst., Vol. 9, No. 5,

pp. 442–458, May 1998.

[16] N. S. Sundar, D. N. Jayashima, D. K. Panda and S. Sadayappan, “Hybrid algorithms

for complete exchange in 2D meshes,” IEEE Trans. Parall. Distrib. Syst., Vol. 12, No.

12, pp. 1201–1218, Dec. 2001.

[17] R. Thakur and A. Choudhary, “All-to-all communication on meshes with wormhole

routing,” in Proc. 8th Int’l Parall. Proc. Symp., Cancun, Mexico, Apr. 1994, pp. 561–

565.

[18] E. A. Varvarigos and D. P. Bertsekas, “Communication algorithms for isotropic tasks

in hypercubes and wraparound meshes,” Parallel Comput., Vol. 18, pp. 1233–1257,

1992.

23


