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Abstract

In open multi-agent systems agents need resources pro-
vided by other agents but they are not aware of which agents
provide the particular resources. Most solutions to this
problem are based on a central directory that maintains a
mapping between agents and resources. However, such so-
lutions do not scale well since the central directory becomes
a bottleneck in terms of both performance and reliability. In
this paper, we introduce a different approach: each agent
maintains a limited size local cache in which it keeps in-
formation aboutk different resources, that is, for each of
k resources, it stores the contact information of one agent
that provides it. This creates a directed network of caches.
We address the following fundamental problem: how can
an agent that needs a particular resource find an agent that
provides it by navigating through this network of caches?
We propose and analytically compare the performance of
three different algorithms for this problem, flooding, teem-
ing and random paths, in terms of three performance mea-
sures: the probability to locate the resource, the number of
steps and the number of messages to do so. Our analysis is
also applicable to distributed search in unstructured peer-
to-peer networks.

1. Introduction

In multi-agent systems (MAS), agents cooperate with
each other to fulfill a specified task. As opposed toclosed
MAS where each agent knows all other agents it needs to in-
teract with, inopenMAS such knowledge is not available.
To locate an agent that provides a particular resource, most
open MAS infrastructures follow a central directory ap-
proach. With this approach, agents register their resources
to a central directory (e.g. a middle agent [12]). An agent
that requests a resource contacts the directory which in turn
replies with the contact information of some agent that pro-
vides the particular resource. However, in such approaches,
the central directories are the bottlenecks of the system both

from a performance and from a reliability perspective.
In this paper, we introduce a new approach to the re-

source location problem in open multi-agent systems. Each
agent maintains a limited size private cache with the contact
information fork different resources (i.e. for each of thek
resources, the agent knows one agent that offers it). This
results in a fully distributed directory scheme, where each
agent stores part of the directory. We model this system as a
network of caches. There is a link from nodev to nodeu if
and only if agentv knows agentu, that is agent’su contact
information is stored inv’s cache.

Caching can be seen as complementary to directories.
Small communities of agents knowing each other can be
formed. Such a fully distributed approach eliminates the
bottleneck of contacting a central directory. It is also more
resilient to failures since the malfunction of a node does not
break down the whole network. Furthermore, the system is
easily scalable with the number of agents and resources.

In abstract terms, this results to the following problem.
Let G(V, E) be a directed, not necessarily connected graph,
where each node (i.e. agent)v ∈ V is connected with at
mostk other nodes. If there is a directed edge from a nodev
to another nodeu, we say thatv knowsaboutu. We address
the following questions: starting from an arbitrary nodev
how can we reach (learn about) another nodeu, what is the
probability to reachu and what is the associated communi-
cation cost.

The general mechanism for locating a resource is as fol-
lows. The agent that requires a resource first looks at its
cache. If no contact information for the resource is found in
the cache, the agent selects other agent(s) from its cache,
contacts them and inquires their local cache for the re-
source. This procedure continues until either the resource
is located or a maximum number of steps is reached. In
essence, this procedure constructs directed path(s) in the
network of caches. If the resource cannot be found, the
agent has to resort to some other (costly) mechanism (e.g.
to a middle agent) which is guaranteed to reply with the
needed information. We provide a number of different al-
gorithms for this procedure. In particular, we study the ef-



fectiveness of using single and multiple search paths.
The performance metrics we are interested in are:

• the probability to locate a resource withint steps,

• the average number of steps needed to locate a re-
source, and

• the average number of message transmissions re-
quired.

The probability of locating a resource is important be-
cause it is directly connected with the frequency with which
an agent resorts the the ‘other’ mechanisms (e.g. middle
agents), and should be as high as possible. On the other
hand, the number of message transmissions which is but
one measure of the communication cost, should be as low
as possible. For each of the above quantities, we provide an-
alytical estimations and simulation results that verify them.

The remainder of this paper is structured as follows. A
summary of related work is given in Section 2. Section 3
introduces a number of searching algorithms while Section
4 presents analytical results of their performance. Section 5
includes our simulation results and, finally, Section 6 con-
cludes the paper.

2. Related work

The only other study of the use of local caches for re-
source location in open MAS that we are aware of is that
in [10]. However, in this work, only the complexity of the
very limited case of lattice-like graphs (in which each agent
knows exactly four other agents in such a way that a static
grid is formed) is analyzed.

The problem that we study in this paper can be seen as
a variation of the resource discovery problem in distributed
networks [4], where nodes learn about other nodes in the
network. However, there are important differences: (i) we
are interested in learning about one specific resource as op-
posed to learning about all other known nodes, (ii) our net-
work may be disconnected and (iii) in our case, each node
has a limited-size cache, so at each instance, it knows about
at mostk other nodes.

A similar problem appears also in resource discovery in
peer-to-peer (p2p) systems. In this case, a peer searches
for a resource provided by some other peers. Flooding-
based approaches, in which each peer contacts all peers
in its neighbor have been proposed in this context as well.
Gnutella [2] is an example of such an approach. [5] suggests
the use of the Gnutella network to help agents locate infras-
tructure components. While there has been a lot of empir-
ical studies (e.g. [9]) and some simulation-based analysis
(e.g. [6]) of flooding and its variants for p2p systems, an-
alytical results are lacking. Here, we analytically evaluate
various alternatives of flooding-based approaches.

Besides flooding-based search, in p2p research, more so-
phisticated approaches (such as CAN [7], Chord [11], Past
[8] and Tapestry [13]) build a distributed hash table to pro-
vide efficient search. With distributed hashing, each re-
source is associated with a key and each node (peer) is as-
signed a range of keys. For hashing to work, the network
must be highly structured, in that resources should not be
placed at random peers but at peers at specified locations.

Finally, flooding has also been used in ad-hoc routing
(e.g. [3]). Here, the objective is to ensure that a message
starting from a source node reaches its destination.

3. Search algorithms

We assume a multi-agent system withN nodes/agents,
where each agent provides a number of resources. We as-
sume that there areR different types of resources. To fulfill
their goals, agents need to use resources provided by other
agents. To use a resource, an agent must contact the agent
that provides it. However, an agent does not know which
agents provide which resources. Furthermore, it does not
know which other agents participate in the system. A com-
mon approach is to introduce middle agents or directories
that maintain information about which agents provide a re-
source. Thus to find a resource, an agent has first to contact
the middle agent.
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Figure 1. Part of a cache network, each agent vi

maintains in its cache the contact information for
two resources ( k = 2)

In this paper, we take a complementary approach. We
assume that each agent can locally store part of what a mid-
dle agent knows. In particular, we assume that each agent
has a private cache of sizek. An agent stores in its cache
information aboutk different resources, that is, for each of
the k resources the contact information of one agent that
provides it. The system is modeled as a directed graph
G(V, E), called thecache network. Each node corresponds
to an agent along with its cache. There is an edge from node
v to nodeu if and only if agentv has in its cache the contact
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Figure 2. Searching the cache network of Figure 1: (a) floodin g, (b) teeming, (c) random paths ( p = 2)

information of agentu. There is no knowledge about the
size ofV or E. An example is shown in Fig. 1. An agent
may provide two or more resources, thus the same agent
may appear more than once in another agent’s cache. Con-
sequently, there may be less thatk outgoing edges from a
node, i.e. a node knows aboutat mostk other agents.

We address the following problem: Given this cache net-
work, how can an agentA, called theinquiring agent, that
needs a particular type of resourcex, find an agent that pro-
vides it? AgentA initially searches its own cache. If it finds
the resource there, it extracts the corresponding contact in-
formation and the search ends. If resourcex is not found
in the local cache,A sends a message querying asubsetof
the agents found in its cache, that is, some ofA’s neigh-
bors, which in turn propagate the message to a subset of
their neighbors and so on.

Due to the possibility of non-termination, we limit the
search to a maximum number of steps,t. In particular, the
inquiring message contains a counter field initialized tot.
Any intermediate node that receives the message first decre-
ments the counter by 1. If the counter value is not 0, the
agent proceeds as normal; while if the counter value is 0
the agent does not contact its neighbors and sends a positive
(negative) response to the inquiring agent ifx is found (not
found) in its cache.

When the search ends, the inquiring agentA will ei-
ther have the contact information for resourcex or a set of
negative answers. In the latter case, agentA assumes that
the cache graph isdisconnectedi.e. that it cannot locatex
through the cache graph. In this case, it will have to re-
sort to other methods, e.g. use a middle agent. Note that
disconnectedness may indeed occur because the network is
dynamic: caches evolve over time.

In the following sections we propose three different
strategies for choosing what subset of its neighbors each
node contacts.

3.1. Flooding

In flooding, A contactsall its neighbors (i.e. all the
agents listed in its cache), by sending an inquiring message,
asking for information about resourcex. Any agent that re-
ceives this message searches its own cache. Ifx is found

in there, a reply containing the contact information is sent
back to the inquiring agent. Otherwise, the intermediate
agent contacts all of its own neighbors (agents in its cache),
thus propagating the inquiring message. The scheme, in
essence, broadcasts the inquiring message. It is not difficult
to see that this scheme floods the network with messages.
As the messages are sent from node to node, a “tree” is un-
folded rooted at the inquiring agent (Fig. 2(a)). The term
“tree” is not accurate in graph-theoretic terms since a node
may be contacted by two or more other nodes but we will
use it here as it helps to visualize the situation.

The flooding scheme has a number of disadvantages.
One is the excessive number of messages that have to be
transmitted, especially ift is not small. Another drawback
is the way disconnectedness is determined. The inquiring
agent has to wait for all possible answers before deciding
that it cannot locate the resource. This introduces a number
of problems. There is a large number of negative replies.
Furthermore, since the network is not synchronized, mes-
sages propagate with unspecified delays. This means that
the reply of one or more nodes at thetth level of the tree
may take quite a long time. One solution is the use of time-
out functions; at the end of the timeout period the inquiring
agentA decides that the resource cannot be located, even if
it has not received all answers.

3.2. Teeming

To reduce the number of messages, we propose a varia-
tion of flooding that we callteeming. At each step of teem-
ing, if the resource is not found in the local cache of a node,
the node propagates the inquiring message only to arandom
subsetof its neighbors. We denote byφ the fixed probability
of selecting a particular neighbor. In contrast with flooding,
the search tree is not ak-ary one any more (Fig. 2(b)). A
node in the search tree may have between 0 tok children,
kφ being the average case. Flooding can be seen as a special
case of teeming for whichφ = 1.

3.3. Random paths

Although, depending onφ, teeming can reduce the over-
all number of messages, it still suffers from the rest of flood-



ing’s problems. One approach to eliminate these drawbacks
is the following: each node contacts only one of its neigh-
bors (randomly). The search space formed ends up being a
single random path in the network of caches. This scheme
propagates one single message along the path and the in-
quiring agent will be expecting one single answer.

In order to speed up the search, we generalize the afore-
mentioned scheme, as follows: the root node (i.e. the in-
quiring agentA) constructsp ≥ 1 random paths. Ifx is
not in its cache, the inquiring agentA asksp out of its k
neighbors (not just one of them). All the other (intermedi-
ate) nodes construct a simple path as above, by asking (ran-
domly) exactly one of their neighbors. This way, we end
up withp different paths unfolding concurrently (Fig. 2(c)).
The algorithm, clearly, produces less messages than flood-
ing or teeming but needs more steps to locate a resource.

4. Performance analysis

In this section, we analyze the performance of the pro-
posed algorithms. In particular, we assume that the algo-
rithms operate for a maximum oft steps and derive analyt-
ically three important performance measures:

• The probability,Qt that the resource is found within
the t steps. This probability determines the frequency
with which an agent avoids using the other locating
mechanisms available;Qt should be as high as possi-
ble.

• The average number of steps,St, needed for locating
a resource (given that the resource is found), which
naturally should be kept low.

• The average number of message transmissions,Mt,
occurring during the course of the algorithm. Efficient
strategies should require as few messages as possible
in order to not saturate the underlying network’s re-
sources (which, however, may lead to a higher number
of steps).

4.1. Preliminaries

Here is a summary of the notation we will use:
R number of resource types
k cache size per agent/node
a = 1 − k/R
PC(j) probability that a particular resource is in

at least one ofj given caches
t maximum allowable number of steps
si prob. of locating a resource in exactlyi steps
Qt prob. of locating a resource withint steps
St average # steps needed to locate a resource
Mt average # of message transmissions.

The network of caches is assumed to be in steady-state,
all caches being full, meaning that each node knows of ex-
actly k resources (along with their providers). The content
of each cache is assumed to be completely random; in other
words the cache’sk known resources are a uniformly ran-
dom subset of theR available resources.

Given a resourcex, the probability thatx is present in a
particular cache is equal to:

PC(1) = P [x ∈ cache] = 1 − P [every cache entry6= x].

The number of ways to choosek elements out of a set of
R elements so that a particular element is not chosen is
(

R−1
k

)

. Since thek elements of the cache are chosen com-
pletely randomly, the last probability above is clearly equal
to:
(

R−1
k

)

/
(

R
k

)

= (R− k)/R, which, givesPC(1) = k/R.
In what follows, we leta = 1−k/R, so thatPC(1) = 1−a.

If we are givenj such caches, the probability thatx is in
at least one of them is:

PC(j) = 1 − (1 − PC(1))j = 1 − aj . (1)

Now let us denote bysi the probability of locatingx at
exactly theith step of an algorithm. Then the probability
of locatingx in any step (up to a maximum oft steps) is
simply given by:

Qt =
t
∑

i=0

si. (2)

An important performance measure is the average num-
ber of steps needed to find a resourcex. Given that a re-
source is located withint steps, the probability that we lo-
cate it at theith step is given bysi/Qt, and the average
number of steps is given by:

St =
t
∑

i=1

i
si

Qt
=

1

Qt

t
∑

i=1

isi. (3)

4.2. Performance of flooding

In flooding, upon receiving the inquiring message, each
node transmits it to all its neighbors (unless the required
resourcex is contained in its cache). As the algorithm
progresses, ak-ary tree is unfolded rooted at the inquiring
node. This search tree has (at most)ki different nodes in the
ith level,i ≥ 0, which means that at theith step of the algo-
rithm there will be (at most)ki different caches contacted.∗

Suppose that we are searching at theith level of this tree
for a particular resourcex. The probability that we find it
there is approximately given bỳi = PC(ki) since in the

∗Since an agentA may offer more than one resource, it may appear
more than once in another node’s cache. Also, there may existmore than
one caches that know ofA. Both those facts may limit the number of
different nodes in theith level of the tree to less thanki.



ith level there areki caches. The approximation overesti-
mates the probability since, as noted above, the number of
different caches may be less thanki. However, it simpli-
fies the analysis and does not introduce significant error as
shown by our simulation results.

The probability of locatingx at exactly theith step is
given by:

si = `i

i−1
∏

j=0

(1 − `j), (4)

that is, we locate it at theith level and in none of the previ-
ous ones. Substituting yields:

si = PC(ki)
i−1
∏

j=0

(1 − PC(kj)) =
(

1 − aki
)

i−1
∏

j=0

akj

,

or,

s
(F )
i =

(

1 − aki
)

a
ki

−1

k−1 , (5)

whereF is used to denote the flooding scheme. Substituting
in (2), and after some manipulation (see Appendix A), we
obtain:

Q
(F )
t = 1 − a

kt+1
−1

k−1 (6)

The average number of steps needed to locate a resource
is found by substituting (5) into (3). After some straight-
forward manipulations (given in Appendix A), the average
number of steps is found to be:

S
(F )
t =

1

Q
(F )
t

(

a − (t + 1)(1 − Q
(F )
t ) +

t+1
∑

i=2

a
ki

−1

k−1

)

(7)
We know of no closed-form formula for the sum in (7).

Let us now compute the number of messages in the
flooding algorithm. If the resource is found in the inquir-
ing node’s cache there will be no message transmissions.
Otherwise, there will bek transmissions to thek neighbors
of the root, plus the transmissions internal to each of the
k subtreesT rooted at those neighbors. Symbolically, we
have:

M
(F )
t = (1 − PC(1))(k + km(t − 1)),

wherem(t−1) are the transmissions occurring within a par-
ticular subtreeT with t−1 levels. For such a subtreeT , if x
is found in its root node there will be 1 positive reply back
to the inquiring node; otherwise, there will bek message
transmissions to the children of the root plus the transmis-
sions inside thek subtreesT ′ (with t−2 levels) rooted at the
node’s children. We are thus led to the following recursion:

m(t − 1) = PC(1) + (k + km(t − 2))(1 − PC(1))

= akm(t − 2) + ak + 1 − a,

with a boundary condition ofm(0) = 1 since the last node
receiving the message (at thetth step) will always reply to
the inquiring node whether it knowsx or not. The solution
to the above recursion is:

m(t − 1) = (ak)t−1 +
(ak)t−1 − 1

ak − 1
(ak + 1 − a),

which gives:

M
(F )
t = ct + c + c(c + 1 − a)

ct−1 − 1

c − 1
, c = ak. (8)

Eq. (8) shows that (as anticipated) the flooding algorithm
requires an exponential number of messages with respect to
cache size (k).

4.3. Performance of teeming

In teeming, a node propagates the inquiring message to
each of its neighbors with a fixed probabilityφ. If the re-
quested resourcex is not found, it is due to two facts. First,
the inquiring node does not contain it in its cache (occurring
with probability1 − PC(1)). Second, none of thek “sub-
trees” unfolding from the inquiring node’s neighbors replies
with a positive answer. Such a subtree hast − 1 levels; it
sends an affirmative reply only if it asked by the inquiring
node and indeed locates the requested resource. Thus, the
probability of not findingx is given by the following recur-
sion:

1 − Q
(T )
t = (1 − PC(1))

(

1 − φQ
(T )
t−1

)k

,

which gives:

Q
(T )
t = 1 − a

(

1 − φQ
(T )
t−1

)k

. (9)

whereT is used to denote the teeming algorithm.
The average number of steps is found to be (see Ap-

pendix A):

S
(T )
t = t − 1

Q
(T )
t

t−1
∑

i=0

Q
(T )
i . (10)

The average number of messages is computed almost
identically with the flooding case; the only difference is that
since a node transfers the message to a particular child with
probabilityφ, the average number of steps will be given by:

M
(T )
t = (1 − PC(1))(kφ + kφm(t − 1)),

wherem(t− 1) is the transmissions occurring within a par-
ticular subtree witht− 1 levels. The recursion (see Section
4.2) takes the form:

m(t − 1) = PC(1) + (kφ + kφm(t − 2))(1 − PC(1)),



which finally gives:

M
(T )
t = ct + c + c(c + 1− a)

ct−1 − 1

c − 1
, c = akφ. (11)

Teeming also requires an exponential number of messages,
which however grows slower than flooding’s case; its rate is
controlled by the probabilityφ.

4.4. Performance of the random paths algorithm

When using the random paths algorithm, the inquiring
node transmits the message top ≥ 1 of its neighbors. Each
neighbor then becomes the root of a randomly unfolding
path. There is a chance that thosep paths meet at some
node(s), thus they may not always be disjoint. However, for
simplification purposes we will assume that they are com-
pletely disjoint and thus statistically independent. Thisap-
proximation introduces negligible error (especially ifp is
not large) as our experiments showed.

At each stepi, i > 0, of the algorithmp different caches
are contacted (one in each of the paths). The probability
of finding resourcex in those caches isPC(p) = 1 − ap.
Therefore, the probability of findingx afterexactlyi steps
is equal to (analogously to (4)):

s
(p)
i =

{

1 − a i = 0
a(1 − ap)ap(i−1) i ≥ 1.

(12)

Given t steps maximum, we can easily calculate the
probabilityQ

(p)
t that what we are looking for is found, using

(2) and (12):

Q
(p)
t = 1 − apt+1. (13)

Similarly, the average number of steps will be given by:

S
(p)
t =

a − (1 + t − ta)(1 − Q
(p)
t )

(1 − ap)Q
(p)
t

. (14)

The derivation is given in Appendix A. Settingp = 1 the
above formulas give the corresponding performance mea-
sures for the single-path algorithm.

Finally, the number of message transmissions can be cal-
culated using arguments similar to the ones in Section 4.2.
If x is not found at the inquiring node’s cache, then there
will be p message transmissions top of its children, plus
the message transmissions along each of thep paths:

M
(p)
t = (1 − PC(1))(p + pm(t − 1)),

wherem(t− 1) is the transmissions occurring within a par-
ticular pathP of t − 1 nodes. For such a pathP , if x is
found in its root node there will be one positive reply back
to the inquiring node; otherwise, there will be one message

transmission to the next node of the path plus the transmis-
sions inside the subpathP ′ (with t − 2 nodes) rooted at the
next node. We are thus led to the following recursion:

m(t − 1) = PC(1) + (1 + m(t − 2))(1 − PC(1))

= am(t − 2) + 1,

where, as in Section 4.2,m(0) = 1 since the last node re-
ceiving the message will always reply to the inquiring node
whether it knowsx or not. The solution to the above recur-
sion is easily found to be equal tom(t−1) = (1−at)/(1−
a) which gives:

M
(p)
t = ap + ap

1 − at

1 − a
. (15)

5. Performance comparison and simulation

The three performance measures are shown in Fig. 3 for
all the proposed strategies. In the plots we have assumed
cache sizes equal to 5% of the total number of resourcesR,
which was taken equal to 200. The flooding and teeming
algorithms depend onk (the cache size) while the random
paths algorithm is only dependent on the ratiok/R. The
graphs show the random paths strategy forp = 1, 2 and 4
paths. For the teeming algorithm, we choseφ = 1/

√
k, that

is, on the average
√

k children receive the message each
time. Larger values ofφ will yield less steps but more mes-
sage transmissions as is evident from Eqs. (10) and (11).

Flooding/teeming yield higher probabilities of locating
the requested resource and within a smaller number of steps,
as compared to random paths. However, the number of mes-
sage transmissions is excessive. Teeming constitutes possi-
bly the better trade off if the probabilityφ is chosen appro-
priately. The random paths strategy performs quite poor for
very small values ofp (e.g. 1 or 2). However, for 4 paths
or more, and larger cache sizes, its performance seems the
most balanced of all.

To validate the theoretical analysis, we developed sim-
ulators for each of the proposed strategies. The simula-
tors initially construct a table mapping each of theR avail-
able resources to random agents (which will provide the re-
source). Next, the caches of all agents are filled with ran-
domk-element subsets of the available resources. After the
initialization, simulation sessions take place with agent0
issuing one location request for a (uniformly) random re-
sourcex each time. Obtained statistics include the number
of messages, the path length and a flag denoting whether
the resource was found or not. For each of the proposed al-
gorithms, at least 1000 such sessions are performed and the
accumulated results are averaged.

In Fig. 4 we provide sample simulation results (patterned
lines) along with the theoretical ones (unpatterned lines)for
two of the strategies: teeming (withφ = 1/

√
k) and random



paths. The plots include the probability of not finding the
required resource (= 1 − Qt) and the average number of
message transmissions (= Mt). The number of resources
used wasR = 200 and the cache sizes varied from 1% to
30% ofR.
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Figure 3. Comparison of the proposed algorithms:
probability of not finding the resource ( = 1 − Qt),
mean path length ( = St) and average number of
message transmissions ( = Mt). The teeming al-
gorithm uses φ = 1/

√
k.

The plots show that our analysis matches the simulation
results closely; the approximations in Sections 4.2 and 4.3
produce negligible error which only shows up in cases of
very small cache sizes. A more detailed discussion, includ-
ing similar results for flooding, can be found in [1].

6. Conclusions and future work

In this paper, we focused on resource location in multi-
agent systems. We proposed and analytically estimated the
performance of a number of variations of flooding-based
search in such systems. We are currently working on mak-
ing the system adaptive in many different ways: cached
data may change over time, giving rise to cache replacement
policies; agent locations may also do so, possibly invalidat-
ing cache entries.
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Figure 4. Simulation results (patterned lines) and analyti cal curves (unpatterned)

A. Formulas

Eq. (6) Let b = a1/(k−1). Then:

Q
(F )
t =

t
∑

i=0

s
(F )
i =

t
∑

i=0

(

1 − aki
)

a
ki

−1

k−1

= b−1

(

t
∑

i=0

bki −
t
∑

i=0

bki+1

)

= 1 − bkt+1
−1.

Eq. (7) Letting b = a1/(k−1) and working exactly as
above, we obtain:

S
(F )
t =

1

Qt

t
∑

i=1

i
(

1 − aki
)

a
ki

−1

k−1

=
b−1

Qt

(

t
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t
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ibki+1

)

=
b−1

Qt

(

bk − (t + 1)bkt+1

+

t+1
∑

i=2

bki

)

.

Eq. (7) follows easily.

Eq. (10) We drop(T ) from our notation for clarity. Using
(3), we obtain:

St =
1

Qt

(

t−1
∑

i=1

isi + tst

)

=
1

Qt
(Qt−1St−1 + tst).

From (2) it is seen thatst = Qt −Qt−1. We thus obtain the
following recursion on the number of steps:

St =
Qt−1

Qt
St−1 − t

Qt−1

Qt
+ t.

This recursion has the solution given in (10).

Eq. (14) Using (3) and (12),

S
(p)
t =

1

Q
(p)
t

t
∑

i=1

ia(1 − ap)ap(i−1)

=
a(1 − ap)

Q
(p)
t

t
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i=1

i (ap)i−1

=
a(1 − ap)(1 − ap(t+1) − (t + 1)apt(1 − ap))

Q
(p)
t (1 − ap)2

which, using (13) and after some manipulation gives (14).


