
DESIGN OF A PROGRAMMABLE CONTROLLER FOR HYPERCYCLE BASED
INTERCONNECTION NETWORKS

R. Sivakumar, V.V. Dimakopoulos and N.J. Dimopoulos

Department of Electrical & Computer Engineering,
University of Victoria, Victoria,B.C,

CANADA - V8W 3P6
E-mail: rsiva | dimako | nikitas @ece.uvic.ca

Abstract: In this work, we consider the
problem of routing in hypercycles which are a class
of multidimensional graphs that are generalizations
of hypercubes. Hypercycles are products of circu-
lant graphs with simple routing, incremental ex-
pandability, and range in complexity from simple
rings to fully connected graphs. We present a novel
framework and design methodology for a controller
through a simple hardware design language called
CoDeL (Controller Description Language). The
functionality of the controller can be described by
manipulating primitives and the design can be syn-
thesized from VHDL. Using FPGA as the medium
of implementation, the controller can be repro-
grammed for a gamut of routing policies as the ap-
plication demands.

1. INTRODUCTION

Message passing concurrent computers such as
the Caltech’s Cosmic Cube [1], MAX [2,3] Intel’s
iPSC [4] are examples of parallel computers that
consist of several processing nodes that interact via
messages exchanged over communication channels
linking these nodes into one functional entity.

The interconnection used in implementing a
concurrent computer can be modelled as a graph.
Several topologies have been introduced and stud-
ied. Recently, a new class of multidimensional
graphs calledhypercycles [7,8] has been intro-
duced. These graphs are products of circulants [9]
and are generalizations of several popular intercon-
nection networks such asrings, toruses, binary n-
cubes, k-ary n-cubes and generalized hypercubes.
Some examples of hypercycles are shown in Figure
1. Many properties and algorithms used for exam-
ple in routing and processor allocation can be
extended to the entire class of hypercycles making
it possible to choose a topology that best suits the

system requirements of a specific class of applica-
tions.

One of the crucial issues the designer of a con-
current machine faces is that of routing. Given that
a computational node does not communicate
directly with all the other nodes of a concurrent
machine, sending a message from one computa-
tional node to any arbitrary node involves several
intermediaries. The situation is even more complex
given that several messages coexist and compete
for communication resources at any given moment.
Deadlocks and congestion may reduce the usable
capacity of the interconnect to zero.

For hypercycle networks, we have devised sev-
eral circuit-switching routing strategies that include
deadlock-preventing and deadlock avoiding ones,
and have reported the results in [8,9]. The imple-
mentation of these routing strategies takes the form

00

01

02

03

10

11

12

13

20

21

22

23

a b
Figure 1. Example of hypercycles.

a:Hypercycle b: TorusG34
11

G88
11

of a routing engine that is responsible for decoding,
forwarding and generally managing the necessary
operations for establishing a source to destination
path and avoiding deadlocks. Because new routing
strategies are developed or well known ones are
adapted to new topologies, we are interested in
developing a framework where a new routing
engine can be developed and implemented and
tested with the same ease that a new program is
developed. In other words, we attempt to avoid the
costly customone-of-a-kind design and layout step.

The routing engine consists of a controller and
several “helper” modules which implement specific
functionality (e.g. a cross-bar, routers, encoders
etc.). The “helper” modules can be thought of as
implementing specific mechanisms required by the
routing policy which is implemented by the con-
troller. For any routing policy, the controller must
be able to import specific message types (i.e. mes-
sage headers) extract pertinent information from
these messages (e.g. the destination address), per-
form some computation, and elicit the appropriate
“helper” modules as need arises by exporting to
them specific message types that can be understood
and utilized by these modules. Since the specifics
are application and policy dependent, the objective
of this work is to develop a framework where the
functionality of an arbitrary controller, which
abides to the constraints outlined above, can be
expressed and eventually embodied as a gate array
or a VLSI circuit. In the following, we shall
describe CoDeL, ourController Description Lan-
guagewhich can be used to specify the functional-
ity of a specific controller, and shall present a
design example of an e-cube controller for hypercy-
cles.

2. CONTROLLER DESCRIPTION LANGUAGE
(CODEL)

The controller’s main function is to interact
with a number of “helper” modules implementing
specific functionality by importing, manipulating
and exporting data and commands to them. The
data the controller is asked to manipulate are
embedded in bit-streams of specific formats and
structure. Since the structure of these data as well
as the way that the controller may obtain these data
(i.e. the protocol of interaction) will be application
specific, special attention has been paid in CoDeL
to include powerful primitives that will allow the
implementation of the anticipated functionality.

DATA TYPES

Data manipulated by a controller are organized
in hierarchical structures calledframes. Frames
represent message headers or specific message
types (e.g. module-setup, module-computation-
request etc.).

A frame is recursively defined to consist of
frames or bitfields at the lowest level, yielding thus
a hierarchical structure. An example of a header
frame is given in Figure 2.

CoDeL uses hierarchical structures (bit-
struct) to represent frames. Abitstruct (analo-
gously to a frame) may be composed of collections
of bits orbitstructs. The example given in Figure
3. represents a structure composed of 28 bits and
corresponds to the header in Figure 2.

bitstruct field3
{
 (bits) b[3];
}
bitstruct field2
{
 (bits) b[2];
}
bitstruct address
{
 (field2) d1;
 (field2) d2;
 (field3) d3;
 (field3) d4;
 (field3) d5;
}
bitstruct header
{
 (address) source;
 (address) destination;
 (bits) type;
}
Figure 3. The bit structure corresponding to the frame in
Figure 2.

Registers or ports are declared as having a par-
ticular structure through a declaration of the form

Destination SourceTypeheader

address D5 D4 D3 D2 D1

field b2 b1 b0 bitfield

Figure 2. A typical frame for a message header. Both
source and destination addresses are expressed as mixed radix
numbers.

register(bitstruct_name) register_name
inport (bitstruct_name) port_namewith protocol_name
outport (bitstruct_name) port_name with protocol_name

The components of a register or port can be
addressed at the bit level or the bitstruct level. We
use a dot notation to identify the components under
the convention that a sequence of dot separated
fields represents a node in the tree representing the
structure of the object and it consists of all the bits
at the leaf nodes of the sub-tree rooted at the node.
As an example, given the declaration

register (header) r1;

then the following are legal names and represent
the corresponding bitfields.

r1(5:0)

the 1st to 6th bit are addressed (indices start
from 0).

r1.destination.d5

represents the 14th to 26th bit (corresponding to
the most significant field of the destination) are
addressed.

PORTS AND PROTOCOLS

Frames must be imported from the environment
(e.g. the network, the “helper” modules or the node
itself) to the controller. Similarly, frames need be
exported to the environment. Our model is that the
controller interacts with its environment through
specific protocols. Thus, an I/O operation is defined
through a port, the definition of which specifies
both the data path and the protocol to be followed.
A port can be input or output. Once a port has been
associated with a particular protocol, the interac-
tions around the port are completely transparent to
the user.

A port is an abstract data type that is accessed
through a set of primitives which includes input,
output and testing the state of the port. A port must
be declared, and its declaration includes both its
data path and the protocol that it uses.

inport (bitstruct_name) pi with protocol_name
outport (bitstruct_name) po with protocol_name

Protocols are supplied within a protocol library.
CoDeL comes with a library of standard protocols,
but the user can also develop additional protocols
to account for the specific circumstances of a
design. Protocols have been introduced so that the
details of the I/O interaction are hidden.

OPERATORS

A number of operations may need be performed
on the bitfields composing a frame. The assignment
statement places the results of a computation to an
output port or a register or portions thereof as dis-
cussed above.

register_expression = computation_expression

A computation_expression is formed using a
number of standard C operators, (these include
additions, shifts and rotates, bitwise logical opera-
tions) which follow the usual C associativity and
precedence rules. Normally, a sub-expression of the
computation_expression constructs circuitry that
uses the result of preceding sub-expressions. Paren-
theses affect the structure of the constructed circuit.

CONTROL STATEMENTS

CoDel includes loop, conditional and wait
primitives with definitions that remind C. The wait
primitive keeps the circuit to the current state until
a certain condition is satisfied. It is used mainly for
synchronizing with external signals.

COMPILATION

CoDeL is compiled to produce synthesizable
VHDL code. The compiler, denoted ascco, con-
sists of the parser and the VHDL generator. The
VHDL generator implements the data path as an
RCR (Register Combinational Circuit Register),
where data are stored in registers, operations are
effected by a combinational circuit or a sequence of
combinational circuits and the results are stored
back in a register. The assignment statement in
CoDeL reflects this model.

Associated with the data path, the control path
sequences which operations are to take place and
when the results are to be stored in the registers. It
is implemented as a sequential machine.

One of the premises in developing CoDeL was
to avoid the explicit description of the control path.
Rather, the control path is automatically synthe-
sized from the algorithm itself. In a sequential envi-
ronment, the control path is inherently described by
the order of the operations in a program. This is
exactly the view taken in CoDeL. The control path
of the design is extracted based on the sequentiality
of the algorithm, and it includes states which
explicitly clock the registers included.

Having each assignment (i.e. register loading)
clocked with a different state of the machine has a
straightforward implementation but has also the
undesirable feature that an excessive number of

states is generated, one state for each assignment in
the CoDeL program. A closer look reveals that
some assignments can be done during the same
machine state under certain conditions, reducing
thus the state count significantly, and yielding
smaller and faster circuits. The current version of
the cco compiler provides such a functionality
which is in fact an automatic parallelization of
assignment blocks (i.e. set of consecutive assign-
ments). The parallelizer determines the data depen-
dencies among the statements and the assignments
are scheduled based on the constructed dependency
graph.

3. CONTROLLER ARCHITECTURE FOR
ROUTING ALGORITHMS

A routing engine present at each node of the
network consists of three major blocks, namely, the
Router, the Crossbar and the Controller. We shall
assume that the communication is bit-serial and
bidirectional with circuit switching. The crossbar
essentially switches the incoming bit-streams to the
corresponding outports as determined by the con-
troller. the third component namely, the router
module, implements a generalized deadlock-free, e-
cube routing scheme for hypercycles [9].

With the above framework, the actions of the
controller can be easily described to forward a mes-
sage from source to destination. At system power-
up, the router is configured by the controller with
parameters that define the topology of the imple-
mented hypercycle and the address of the node.
From that point on, it expects a destination address
and it returns the “network port” through which the
circuit is to be continued. It is the responsibility of
the controller to ascertain that the required “net-
work port” is available and continue the circuit.
The router that we have implemented can be pro-
grammed for hypercycles of up to four-dimensions
with a maximum degree 16. The mixed radix num-
ber system is used to represent addresses in the
router.

If the “network port” returned by the router is
free, then the circuit can be extended. The control-
ler uses the address of the “network port” and sets
the appropriate switches in the crossbar so that it
can “inject” the header of the message on both
directions of the chosen link. At the same time, the
collision detection hardware that is incorporated in
the injector detects any concurrent attempt by the
recipient node to use the same link. Upon detection
of a collision, the controller implements a collision
resolution strategy based on the lexicographical

ordering of the nodes of the network.
If no collision was detected, then the controller

sets the crossbar switches so that the circuit is
extended and marks the “network port” as used.

The cycle continues with the controller sequen-
tially testing all network or host ports for incoming
traffic, and the status of the switches that imple-
ment the currently active circuits. If a closed switch
has been opened because of a break (i.e. termina-
tion of the circuit) then the controller updates its
internal state of the ports to reflect that the previ-
ously used port is now free and continues the cycle.
It is assumed that the switches at the network part
of the crossbar are paired with switches at the con-
troller part so as once the circuit is dissolved, the
incoming link is connected to its corresponding
port while the outgoing link is disconnected. Any
new messages just arriving, will be captured by the
ports and initiate a new routing cycle by the con-
troller.

IMPLEMENTATION

The control algorithm for the above e-cube
routing policy has been written in CoDeL and the
resultant VHDL code was targeted to a XILINX
4010 PG191 chip with 158 I/O pins. For this partic-
ular example, we assumed a message consisting of
a 4-bit header and two 16-bit addresses for the
source and destination. Besides, 17 serial-to-paral-
lel ports (including the host) present messages to
the controller for routing decisions. I/O interactions
of the controller with the crossbar and router are
controlled through a synchronous strobed protocol.
The size of the source code in CoDeL is 168 lines
which was translated into a 1765-line Mentor
VHDL code. Fragments of the CodeL program are
shown in Figures 4 and 5. The control path of the
sequential machine consists of 79 states of which it
takes 25 clock cycles for the initialization, 20
cycles for interaction with the router module, 22
cycles for transmitting the message assuming there
is no collision or a block and 12 cycles for the final
destination.
The algorithm has also been adapted for a smaller
2-D network to reduce the I/O pin count and the
resultant VHDL code has been mapped to a Xilinx
4010 PC84 chip. The code has been simulated for
functional correctness and it is expected that a 20
Mhz clock or higher would provide commendable
performance with a delay of no more than 2µs in
routing a message.

bitstruct data_frame
A 36-bit mixed_radix frame defn.
{
 (mixed_radix_4) source_address;
 (mixed_radix_4) destn_address;
 (bits) header[4];
}
outport bus_enable[17];
inport (data_frame) p1 with input_handshake;
inport (npg_port_frame) p2 with input_ecube;
outport (data_frame) p3 with output_handshake;
outport p4[19] with output_ecube;
outport (cross_bar_frame) cf

 with output_handshake;
inport config;
inport data_sent, collision;
inport available_ports[17];

Figure 4. CoDeL fragment that defines the ports used in the
example controller. Only thedata_frame declaration is in-
cluded here.

while (i <= 17) # sample each port
{
 shift_value = shift_value << 1;
 bus_enable = shift_value;
 if (isready(p1))
 {
 # test for availability of data
 input(p1);
 destn = p1.destn_address;
 # extract the destination address from p1
 p4 = (5,available_ports);
 # concatenate available ports with 5
 output(p4);
 # send available ports to router
 p4 = (2,destn);
 output(p4);
 input(p2);
 # Receive computed port and control
 # signals (from router) in port p2

...

Figure 5. Fragment of the start of the main loop. Each of
the Serial/Parallel (S/P) interfaces is polled sequentially, if it
has valid data, the header is imported, the destination address
is extracted and sent to the router, and then it inputs the result-
ing “network port”.

4. CONCLUSION

In this work, we have formulated a special pur-
pose hardware description language that provides
elementary functions and data structures. These
will serve as basic building blocks for transcribing
the actions of the controller. Re-programmability is
a major advantage of this approach when the user
needs to change the controller’s function for
instance to have a different routing policy or when
the network configuration changes. Hence fast sili-
con compilation is possible. A rigorous character-
ization, validation and performance analysis of the
afore mentioned Xilinx implementations will be
carried out shortly. In addition, optimization of the
compiler, minimization of redundant states, intro-
duction of loop indices and multi-module instantia-

tion are areas for future work which will greatly
augment the specification of more complex routing
polices and produce efficient circuits.

REFERENCES

1. C. L. Seitz, “The cosmic cube”, CACM, vol. 28, pp. 22 -
33, Jan 1989

2. R. D. Rasmussen, N. J. Dimopoulos, G. S. Bolotin, B. F.
Lewis, and R. M. Manning “MAX: Advanced General Pur-
pose Real-Time Multicomputer for Space Applications”
Proceedings of the IEEE Real Time Systems Symposium
pp. 70-78, San Jose, CA., Dec. 1987.

3. R. D. Rasmussen, G. S. Bolotin, N. J. Dimopoulos, B. F.
Lewis, and R. M. Manning “Advanced General Purpose
Multicomputer for Space Applications”Proceedings of the
1987 International Conference on Parallel Processingpp.
54-57, 1987.

4. iPSC User’s Guide, No. 17455-3, Intel Corp., Portland,
Ore., 1985.

5. Peterson, J.C., J. O. Tuazon, D. Lieberman, M. Pniel “The
MARK III Hypercube -Ensemble Concurrent Computer”
Proceedings of the 1985 International Conference on Par-
allel Processing pp. 71-73, 1985.

6. E. Chow, H. Madan, J. Peterson “A Real-Time Adaptive
Message Routing Network for the Hypercube Computer”
Proceedings of the Real-Time Systems Symposium,pp. 88-
96, San Jose CA., 1987.

7. N. J. Dimopoulos, D. Radvan, K.F. Li “Performance Eval-
uation of the Backtrack to the Origin and Retry Routing for
Hypercycle based Interconnection Networks”Proceedings
of the Tenth International Conference on Distributed Sys-
tems, Paris, pp. 278-284, 1990.

8. R. Sivakumar, N. J. Dimopoulos, V. Dimakopoulos, M.
Chowdhury, D. Radvan “Implementation of the Routing
Engine for Hypercycle Based Interconnection Networks”
Proceedings of the 1991 Canadian Conference on Very
Large Scale Integrationpp. 6.4.1-6.4.7, Kingston, 1991.

9. N. J. Dimopoulos, and R. Sivakumar, "Deadlock-prevent-
ing routing in Hypercycles",The Canadian Journal of
Electrical and Computer Engineering, No. 4, vol. 19, Oct.
1994, pp. 193-199.

10.Mentor Graphics Corporation, AutoBlocks Reference
Manual, v8.2_5, 1994

Controller

Router
(Deadlock Preventing)

Figure 6. Structure of a circuit switching routing node in a hypercycle network.
Switch that is closed
Switch that is open

S/P Serial to Parallel

fr
om

ne
tw

or
k

to
network

fr
om

ho
st

to
host

CROSSBAR

s/p s/p s/p s/p

inject CD

C
R

O
S

S
B

A
R

IN
T

E
R

F
A

C
E

ho
st

in
te

rf
ac

e
host
interface

Controller Part

Network Part network/host
ports

network access
bus

