
Communications in Binary Fat Trees∗

Vassilios V. Dimakopoulos Nikitas J. Dimopoulos

Department of Electrical and Computer Engineering
University of Victoria, P.O. Box 3055,
Victoria, B.C., CANADA, V8W 3P6
E-mail: {dimako,nikitas}@ece.uvic.ca

Abstract

Fat trees are built around complete b-ary trees but have
processing nodes only at the leaf level and may have dif-
ferent branch capacities in different levels. In this pa-
per we study the communication capabilities of binary
fat trees (including the simple binary tree) with respect
to five major communication operations: broadcasting,
multinode broadcasting, scattering, gathering and total
exchange. We present and analyse optimal and nearly
optimal algorithms for the five operations.

Keywords: binary trees, collective communications,
fat trees, interconnection networks.

1 Introduction

Recently there has been an increased interest in design-
ing efficient algorithms to handle the communication
requirements of distributed memory multiprocessors.
Such algorithms seek to schedule regular communica-
tion patterns and find their way to standard library
routines so that effectively most of the interconnection
network details are hidden from the user.

The need for efficient communication was realized
quite early, especially in the context of parallel numer-
ical algorithms [4, 5] where a variety of such regular
communication patterns was observed. Although the
terminology is not standard yet, five major patterns
have been identified [1, 6, 10]

• broadcasting where a certain node sends the same
message to all nodes in the network

• scattering where a certain node sends different
messages to the other nodes

• gathering where a certain node receives a message
from every other node

• multinode broadcasting which involves simultane-
ous broadcastings from all nodes

∗This research was supported in part through grants by

NSERC, IRIS and the University of Victoria

• total exchange, which involves simultaneous scat-
terings (or gatherings) from all nodes.

It is worth noting that other related operations have
been studied; for example multicasting [8] is a gener-
alized form of broadcasting where the receiving nodes
may form a proper subset of the nodes in the network.

The above communication modes occur in a vari-
ety of situations although numerical algorithms and
especially matrix-related ones form the best paradigm.
Total exchange for example is associated with FFT
algorithms and matrix transposition while multinode
broadcasting arises naturally in iterative algorithms
[1]. Scattering and gathering are considered dual op-
erations. An algorithm for one of the problems can be
transformed to an algorithm for the other by simply
reversing the data paths.

With the advent of Thinking Machines’ CM-5 [12],
fat tree networks have received increased attention.
Fat trees are hierarchical networks built around com-
plete trees but have processing nodes only at the leaves.
The capacities of the branches in a fat tree may not re-
main constant in all levels, but rather increase in an
unspecified manner towards the root. In this paper we
address the algorithmic nature of the five communica-
tion operations in fat trees. Experimental results on
the subject have been reported in [9].

This work concentrates on binary fat trees although
the results can be easily extended to other fat trees as
well. In the next section we give the necessary defini-
tions, the model we will follow and lower bounds on
the time requirements of the five communication prob-
lems. The actual algorithms and analyses appear in
sections 3 – 5. Section 6 concludes the work.

2 Preliminaries

A b-ary fat tree [7] is a complete b-ary tree whose
branches get thicker (i.e. increase in capacity) as one
moves from the leaves to the root. Level 0 of the tree
is the leaf level and level logb n is the level of the root
node as shown in Fig. 1; n (a power of b) is the number

0 1 2 n-1

Capacity c

Capacity c2

1

Level 0

Level 1

Level 2

Level log n

. . .

Figure 1 A fat tree

of leaves, which are numbered from left to right as 0, 1,
. . ., n − 1. The leaves correspond to processing nodes
while the other levels include only routing nodes. We
are going to concentrate in binary fat trees (BFT) and
use the notation log n to represent the logarithm of n
in base b = 2. The branches between levels i − 1 and
i have capacity ci ≥ 1 and if j > i then cj ≥ ci. The
branch capacity corresponds to the number of physical
links included in the branch.

Although the results presented here cover any ca-
pacities arrangement, two capacity patterns will be of
interest: constant and exponential which represent the
two extremes in interconnection size. In the first case
ci = 1 for all levels i = 1, 2, . . . , log n and the resulting
fat tree (CBFT) is identical to the simple complete bi-
nary tree with processing nodes only at the lowest level.
The exponential-capacity tree (EBFT) has ci = 2i−1

and as a result the total number of physical links at
each level is equal to n.

In the following it is assumed that the network is
packet-switched. Each of the routing nodes is equipped
with packet queues (although this will not always be
necessary) and is able to utilize all its incident links
simultaneously. This is usually refered to as the mul-
tiport model. Messages are assumed to consist of a
single packet and to be of the same size so that trans-
ferring a message between two neighbors needs a con-
stant amount of time which we take as one time unit (or
step). The links are assumed to be bidirectional and
fully duplex; half-duplex links where only one direction
can be accommodated at a time cause a slowdown by
at most a factor of two.

2.1 Lower bounds

Broadcasting under the multiport model requires D
steps in a network with diameter equal to D. In our
case this means that 2 log n steps are enough; since the
path between any pair of nodes is unique in the tree,
broadcasting is easily accomplished by setting all rout-
ing nodes to a broadcast mode whereby the received
message is replicated towards all directions. Broad-
casting will not be further discussed here.

Scattering and gathering in general trees of proces-
sors were considered in [2]. Although related, our case

Lower Bounds

Broadcasting 2 log n
Scatter/Gather n + 1

Multi. Broadcast. n + 1
Total Exchange∗ max{n + 1, n2/4clog n}

∗(bound is not tight)

Table 1 Lower bounds

differs in that the significant nodes are confined to the
leaves of the tree. The observation that the source node
has to send or receive n− 1 different messages over its
single incident link leads to a simple lower bound of
n − 1 steps. As a matter of fact the exact bound is
n + 1 steps and can be seen as follows. In gathering
n − 1 messages at processor 0, in the first four steps
we can at most receive only two messages since node 1
is in distance two and either of nodes 2 or 3 is in dis-
tance four away. Consequently there will be at least
two steps with no message reception by node 0. The
same bound applies to the case of multinode broadcast-
ing as every node will send and receive n − 1 different
broadcast messages over its bidirectional incident link.

The same argument though for the case of total ex-
change does not always yield a tight bound. Consider
a BFT and observe that there are (n/2)2 messages to
cross the root node on their way from the left to the
right subtree. If the capacity of the branches incident
to the root node is clog n then at least n2/4clog n steps
are needed for all (n/2)2 messages to get across. At the
extremes, this renders total exchange as an Ω(n2) op-
eration for CBFTs, and an Ω(n) operation for EBFTs.
It should be clear that this simple argument does not
yield tight bounds. In fact, a tighter lower bound for
EBFTs will be proven in section 5. The bounds are
summarized in Table 1.

In the next sections we show that scattering, gather-
ing and multinode broadcasting can be accomplished in
the minimum number of steps by the simple CBFT. As
a consequence, increasing the capacities of branches of-
fers no advantage to these operations. Total exchange
is the only case where branch capacities matter and is
treated in section 5.

3 Scattering

Since a gathering algorithm can be had from a scatter-
ing algorithm (and vice versa) by simply reversing the
data paths, we only consider scattering here.

The lower bound of n + 1 steps can be achieved
in the CBFT (hence in any other fat tree) using the
furthest-first scheduling discipline whereby the source
node gives priority to messages that have to travel the

furthest.

i-1 i

Root (R)
log n

S

R i

i

0 2 2 -1

Level i

Figure 2

Theorem 1 The furthest-first discipline results in an
optimal scattering algorithm for BFTs.

Proof. Assuming without loss of generality that node
0 of a CBFT is the source node, consider the routing
node Ri at level i that is the root of the subtree con-
taining leaf nodes 0 to 2i − 1, as shown in Fig. 2. Let
Si be the right subtree of Ri which contains nodes 2i−1

to 2i − 1. The last message destined for a leaf of Si

leaves node 0 just before the first message for the left
subtree of Ri does, according to the furthest-first reg-
imen; consequently the last message for a leaf of Si is
dispatched at time n − 2i−1, for all i = 1, 2, . . . , log n.
Since the leaves of Si are in distance 2i from node 0,
the last message for Si will reach its destination at time

Ti = n − 2i−1 + 2i − 1.

Consequently the algorithm will finish at time

T = max
1≤i≤log n

{Ti}.

It can be seen that Ti is a decreasing function of i for
i ≥ 2. The maximum value for integer i can thus occur
only for i = 1 or 2. Since T1 = n and T2 = n + 1, we
see that T = n + 1 as claimed.

4 Multinode broadcasting

We show here that in a simple CBFT where all nodes
begin broadcasting at the same time, and all nodes
have enough buffers, all messages will have been re-
ceived at time n + 1, i.e. multinode broadcasting can
be achieved in time equal to the lower bound. The al-
gorithm is in effect a flooding procedure [11] where re-
ceived messages are replicated to all directions (expect
the one they came from) when received by intermedi-
ate nodes. An example for the case of n = 4 nodes is
shown in Fig. 3.

Theorem 2 Multinode broadcasting can be performed
in the minimum number of steps in a CBFT.

1 2 30 1 2 30

1 2 30 1 2 30 1 2 30

m1 m3

m0

m3

m1

m2

m0 m2
)m(1 m()3

m0 m2

m1 m3 m2

m1 m3

m2 m0

m2 m0

m3

m0 m3 m1 m1

Step 3 Step 4 Step 5

Step 2Step 1

Figure 3 Multinode broadcasting in a 4-node CBFT

Proof. The case of 4 nodes was covered in Fig. 3.
Assuming as an induction hypothesis that for n ≥ 4
we need exactly n + 1 steps, we shall show that 2n + 1
steps are enough when 2n nodes are involved.

T
L

T
R

RL RR

n nodes n nodes

R

Level log n

Figure 4

Consider two CBFTs TL and TR with n leaves each
and root nodes RL and RR correspondingly. A 2n-leaf
CBFT includes an extra node adjacent to both RL and
RR as shown in Fig. 4. At time log n (when the first
two messages of the leaves of TL reach node RL) all the
other messages of TL are pipelined below node RL so
that they can cross the node one by one in the following
steps. Analogous is the situation in TR.

For multinode broadcasting to finish within TL there
are another n+1− log n steps remaining, based on the
induction hypothesis. But the first message of TR will
either be queued behind a TL message on its way to the
leaves of TL or will arrive at the first level of TL in the
next log n + 1 steps, the rest of TR messages following
behind it. In the second scenario, since n ≥ 4 it is
seen that n + 1 − log n ≥ log n + 1. Consequently, in
both cases the messages from the leaves of TR have
enough time to arrive before multinode broadcasting
is finished within TL. As a result n more steps after
time n + 1 are enough to deliver the n messages from
TR to the leaves of TL, proving the claim.

4.1 Queueing considerations

The flooding algorithm analyzed above achieves the
lower bound but bares the cost of excessive queueing

requirements. Consider any BFT and assume that the
last message to be received by node 0 is the message
m from a node in distance 2i away. Normally m would
arrive at time 2i but due to contention it arrives at time
n+1 instead, hence it was delayed by n+1− 2i steps.
Assuming FIFO queues, this means that the sum of
the queue sizes along its path reached the value n +
1−2i; on the average the queue size per node was (n+
1− 2i)/2i. The minimum value for the last expression
occurs for i = log n, and it shows that at best the
average queue size will be O(n/ log n). For CBFTs it
can be shown that the exact queue sizes needed at the
outgoing links of a level-i routing node reach the value
2i−1 (see [3]).

It should be clear that the queueing requirements of
the algorithm are excessive. The routing nodes should
be kept as low in complexity and cost as possible; the
presence of queueing plus the large size of the queues do
not contribute to that effect. It is worth noting that
there exists an (n + 2 log n − 2)-step algorithm that
eliminates the queues completely for any BFT [3].

5 Total exchange

Total exchange represents the densest form of commu-
nication as each node has a different message to send to
every other node. The branch capacities now control
the complexity of the algorithms as shown in Table 1.

For a CBFT a simple solution consists of n consec-
utive scatterings one by each node in turn. Such an
algorithm has the advantage that no queueing capabil-
ity is required from the routing nodes. Based on our
previous results the n scatterings will take n(n + 1)
steps. This time can be reduced in half by observing
that two scatterings can be performed simultaneously
with no contention.

We now give an algorithm that further reduces the
time requirements, induces no queueing, and is appli-
cable to any capacities pattern. The algorithm runs
in time close to the lower bounds in Table 1 and is in
principle similar to total exchange algorithms for hy-
percubes [1]. It can be recursively stated as follows:
initially the left and right subtrees of the root node
exchange their 2(n/2)2 messages meant for the oppo-
site sides. Then, the two subtrees perform internally
a total exchange in parallel. Iteratively, the algorithm
can be stated as:

For all i = 0 to log n − 1
/* Phase i */

Do in parallel for all level log n − i nodes

Transfer all messages of the left subtree

meant for the right subtree and vice versa.

During the ith phase a node at level hi = log n− i has
to pass (2hi−1)2 messages in each direction over its in-

cident branches which have capacity chi
. This means

that only chi
messages can cross at a time. To avoid

contention while maintaining the maximum speed, ex-
actly chi

leaves should dispatch messages at a single
step, and the messages should be appropriately chosen
so that their destinations are distinct.

Consider the ith phase and the jth node from the
left at level hi, Rj

hi
, 0 ≤ j ≤ 2i−1 − 1. In Fig. 2 node

Ri is actually node R0
i under our notation. Node Rj

hi

is the root of the subtree that contains leaves j2hi to
(j + 1)2hi − 1. In the case of CBFTs chi

= 1, i.e.
only one message should be dispatched at a time. We
divide phase i in 2hi−1 periods. In each period, one
node from each of the two subtrees of node Rj

hi
sends

its 2hi−1 messages one by one. Consequently, phase i
can be implemented as follows:

/* Phase i for CBFTs */

Do in parallel for all j = 0 to 2i−1
− 1

For k = 0 to 2hi−1 /* 2hi−1 periods */

For l = 0 to 2hi−1 /* 2hi−1 messag. to send */

Node j2hi + k sends to j2hi + 2hi−1 + l and

Node j2hi + 2hi−1 + k sends to j2hi + l.

In the case of EBFTs, all leaves must dispatch mes-
sages simultaneously in order to achieve the maximum
speed. Consider leaf k in the subtree with Rj

hi
as the

root node. If ⊕ is the bitwise XOR operation, then
k ⊕ 2hi−1 inverts the (hi − 1)th bit in the binary rep-
resentation of k and consequently, if k belongs to the
left subtree of Rj

hi
then k ⊕ 2hi−1 is a node belonging

to the right subtree and vice versa. Thus we can let
phase i consist of 2hi−1 steps. During step l any node
k sends its message destined to node k⊕ 2hi−1 ⊕ l and
there will be no contention between messages:

/* Phase i for EBFTs */

Do in parallel for all leaf nodes k = 0 to n − 1

For l = 0 to 2hi−1 /* 2hi−1 messages to send */

Node k sends to node k ⊕ 2hi−1
⊕ l.

Timing analysis: During phase i there are (2hi−1)2

messages to cross a level hi = log n − i node in each
direction, and only chi

messages can do that at a time.
Accounting also for the initial delay of 2hi steps for the
first message to reach the opposite side, phase i needs

Ti =

⌈

(2hi−1)2

chi

⌉

+ 2hi − 1.

The total time needed for the algorithm is thus

T =

log n−1
∑

i=0

Ti =

log n
∑

i=1

⌈

4i−1

ci

⌉

+ (log n)2. (1)

Pipelining the phases: Instead of executing the
phases serially, we can pipeline them appropriately.

Consider phase i exactly hi − 1 steps before it finishes.
This is the time when the last message from a level
hi node is transferred to one of its children. Phase
i + 1 could have safely started hi − 2 steps before that
time instant, and no contention would occur because
no message of that phase would have reached the chil-
dren of the level hi node yet. Consequently, phases i
and i+1 can have 2hi−3 steps overlapping, leading to
a savings of

∑log n−2
i=0 (2hi − 3) = (log n)2 − 2 log n + 1

steps. Using (1), we conclude that the total number of
steps for the new algorithm is

T =

log n
∑

i=1

⌈

4i−1

ci

⌉

+ 2 log n − 1. (2)

Simplifying further, for the CBFT we have ci = 1 and

TCBFT =

log n
∑

i=1

4i−1 + 2 log n− 1 =
n2 − 1

3
+ 2 log n− 1.

For EBFTs, ci = 2i−1 and (2) gives

TEBFT =

log n
∑

i=1

2i−1 + 2 log n − 1 = n + 2 log n − 2. (3)

5.1 The exponential capacities case

The above analysis shows that the presented total ex-
change algorithm is suboptimal with respect to the
lower bounds of Table 1 by a very small multiplica-
tive factor in the worst case. It should be clear that
the given bound is not tight since in deriving it not all
message transmissions where considered. We show be-
low that for the case of EBFTs a tighter lower bound
exists which guarantees that our algorithm is very close
to optimal (within 2 log log n steps) for such trees.

If at any given step of an algorithm a node did not
receive a message we say that a hole occurred in its
receptions. Notice that if the average number of holes
per node was h then the algorithm takes time T ≥
n− 1 + h; the equality holds if all nodes had the same
number of holes (h).

Consider the graph Gi which is derived from the
EBFT by collapsing its last i levels into a single vertex.
We then have a collection of 2i subtrees T1, T2, . . . , T2i

each having n/2i nodes and their roots have a single
common parent. In addition we introduce new edges
between every pair of leaves in each of the 2i subtrees.
We also impose the restriction that only one message
may be received by a leaf at any time so that the new
edges cannot be used simultaneously. It is seen that
any total exchange algorithm for the original EBFT is
a total exchange algorithm for Gi (but not vice versa)

— the message transfers within the last i levels of the
EBFT are substituted by no-ops in Gi and the addi-
tional edges in Gi are not utilized. As a result, the
graph Gi can be used to derive a lower bound on total
exchange algorithms for the EBFT.

A message will be called internal to subtree Tj if
both the source and the destination lie in Tj otherwise
the message is external . The crucial observation is that
holes will start appearing in Gi after the first external
message is dispatched. Assume that T0 is the one to
send the first e external messages at time t. Then at
time t + 1 there will be e holes in the nodes of T0.
In fact, due to the 2(log n − i + 1)-step delay external
messages suffer before reaching their destinations, no
messages will have arrived from other subtrees before
time t + 2(log n − i + 1). Consequently the number of
holes in T0 between times t and t+2(log n− i+1) will
be equal to the total number of external messages it
sent during this period.

We will now find the minimum number of holes
that will occur in every node in Gi. Consider any
total exchange algorithm for Gi and partition time in
2(log n−i+1)-step periods. If there are p such periods
in total, the algorithm needs time T ≥ 2p(log n−i+1).

Assume that at the sth period there were k
(j)
s holes in

Tj . Hence in the first period the total number of holes
was

k1 = k
(1)
1 + k

(2)
1 + · · · + k

(2i)
1 .

This is exactly the number of external messages sent
(in total) during the first period. During the second
period the total number of holes was

k2 = k
(1)
2 + k

(2)
2 + · · · + k

(2i)
2

and as a result the total number of external messages
sent during the second period was at most equal to
k1 + k2. In general, during the jth period the maxi-
mum number of external messages was k1+k2+· · ·+kj .
Hence after p periods the total number of external mes-
sages observed was at most

p
∑

j=1

(k1 + k2 + · · · + kj) =

p
∑

j=1

(p − j + 1)kj

= p

p
∑

j=1

kj −

p
∑

j=1

(j − 1)kj

= pH − Q

where H =
∑

kj is the total number of holes and Q is
a non-negative term.

Each node must sent in total n − 1 messages out
of which the n − n/2i will be external, so that the
total number of external messages will be n(n−n/2i).

This means that pH ≥ n(n − n/2i). Notice that the
average number of holes per node is h = H/n and since
T ≥ 2p(log n − i + 1), the last inequality yields

hT ≥ 2n(1 −
1

2i
)(log n − i + 1). (4)

Since (4) holds for any i, it holds for i = log log n+1
as well, which gives

hT ≥ 2n(1 −
1

2 log n
)(log n − log log n)

= 2n log n − 2n log log n − n + n
log log n

log n

≥ 2n log n − 2n log log n − n (5)

From our earlier discussion, if h is the average number
of holes per node then T ≥ n − 1 + h, the equality
holding if all nodes have exactly h holes. Assume now
that h < q = 2 log n − 2 log log n − 1. Then (5) gives

T ≥
2n log n − 2n log log n − n

2 log n − 2 log log n − 2

= n +
n

2 log n − 2 log log n − 2

and after a bit of algebra, we get T > n − 1 + q. On
the other hand, if h > q then T ≥ n−1+h > n−1+q.
Consequently, the minimum time can be had only for
h = q and in that case

T = n−1+q = n+2 log n−2 log log n−2 steps. (6)

Lemma 3 Any optimal total exchange algorithm for
EBFTs needs at least n+2 log n− 2 log log n− 2 steps.

Proof. This is an immediate consequence of the facts
that a total exchange algorithm for EBFTs is a total
exchange algorithm for Gi and that for Gi the lower
bound is given by (6).

Intuitively, an optimal total exchange algorithm for
graph Gi requires strictly less time than an optimal al-
gorithm for the EBFT. We conjecture here that there
exists no total exchange algorithm for EBFTs that re-
quires less than n + 2 log n − 2 steps.

6 Conclusion

We have studied the implementation and performance
of communication operations in fat trees where the pro-
cessing nodes are confined to the leaf level. Although
we concentrated on binary fat trees, the results can be
generalized to b-ary fat trees easily. Broadcasting, scat-
tering and multinode broadcasting can be performed
optimally in trees with minimal branch capacities. In-
creased capacities on the other hand are beneficial in

such operations as total exchange which involve a large
number of messages.

There are a number of issues to be considered.
Multinode broadcasting has excessive queueing re-
quirements if it is to be performed in the minimum
number of steps. What is the lower bound under the
constraint of no queueing? The total exchange algo-
rithm we presented induces no queueing and is very
close to optimal especially in the case of EBFTs. Im-
proved bounds, though, for this problem need to be
found as the straightforward are not tight.

References

[1] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and

Distributed Computation: Numerical Methods. Engle-
woods Cliffs: Prentice - Hall, 1989.

[2] S. N. Bhatt et al., “Scattering and gathering messages
in networks of processors,” IEEE Trans. Comput., Vol.
42, No. 8, pp. 938–949, Aug. 1993.

[3] V. V. Dimakopoulos and N. J. Dimopoulos, “Leaf com-
munications in trees and fat trees,” Technical Report
ECE-94-7, University of Victoria, Sept. 1994.

[4] D. B. Gannon and J. van Rosendale, “On the impact
of communication complexity on the design of parallel
numerical algorithms,” IEEE Trans. Comput., Vol. C-
33, No. 12, pp. 1180–1194, Dec. 1984.

[5] S. L. Johnsson, “Communication efficient basic linear
algebra computations on hypercube architectures,” J.

Parallel Distrib. Comput., Vol. 4, pp. 133–172, 1987.

[6] S. L. Johnsson, C.-T. Ho, “Optimum broadcasting and
personalized communication in hypercubes,” IEEE

Trans. Comput., Vol. 38, No. 9, pp. 1249–1268, 1989.

[7] C. E. Leiserson, “Fat-trees: universal networks for
hardware-efficient supercomputing,” IEEE Trans.

Comput., Vol. C-34, No. 10, pp. 892–901, Oct. 1985.

[8] X. Lin and L. M. Ni, “Multicast communication in
multicomputer networks,” in Proc. 1990 Int’l Conf.

Parall. Proc., 1990, pp. 114–118.

[9] R. Ponnusamy, R. Thakur, A. Choudhary and G. Fox,
“Scheduling regular and irregular communication pat-
terns on the CM-5,” in Proc. Supercomputing ’92 ,
Minneapolis, Nov. 1992, pp. 394–402.

[10] Y. Saad and M. H. Schultz, “Data communications in
parallel architectures,” Parallel Comput., Vol. 11, pp.
131–150, 1989.

[11] D. M. Topkins, “Concurrent broadcast for information
dissemination,” IEEE Trans. Softw. Eng., Vol. 11, No.
10, pp. 1107–1112, Oct. 1985.

[12] C. E. Leiserson et al., “The network architecture of the
Connection Machine CM-5,” in Proc. 4th ACM Symp.

Parall. Algor. Arch., June 1992, pp. 272–285.

