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Abstract

One of the crucial issues associated with loosely-coupled multiprocessors based on
interconnection networks is information dissemination. A number of regular communi-
cation patterns seem to cover a large portion of information dissemination requirements
in practice: broadcasting, scattering/gathering, multinode broadcasting and total ex-
change. In this work we consider tree networks where the processing nodes are confined
to the leaves of the tree. This type of hierarchical topology is also the basis of fat tree
networks. We present and analyze algorithms and their timing requirements for the

aforementioned problems under two models of communication capabilities.
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1 Introduction

Distributed memory multiprocessors are based on a collection of independent processing
nodes integrated through an interconnection network. The presence of locally generated
data spawns the need for information dissemination: a process through which “knowledge-
able” nodes inform the rest of the network about the items of information they possess.

A number of information dissemination problems appear frequently in practice and their
effective solution is of paramount importance to system performance. They include: broad-
casting where a particular node needs to send the same message to all the other nodes in
the network; multinode broadcasting where every node performs a broadcasting; scattering
(gathering) where a particular node needs to send (receive) different messages to (from) all
the other nodes; total exchange or multiscattering where every node performs scattering or
gathering; that is, every node has distinct messages to send to the other nodes in the net-
work. These communication problems are also known as collective communications. The
need for their efficient solution was realized quite early, especially in the context of parallel
numerical algorithms [2]. Broadcasting is an essential operation in almost every parallel al-
gorithm. Multinode broadcasting arises naturally in iterative algorithms. Total exchange is
a communication pattern occurring for example in FF'T algorithms and is usually identified
with matrix transposition.

Saad and Schultz [11], Johnson and Ho [8] and Bertsekas et al [1] are some of the
researchers that studied the above communication problems for hypercubes. Since then
there has been a considerable amount of work on communication algorithms for networks
other than hypercubes and for a number of different models of communication; see for
example [12]. Two excellent surveys on the subject were given by Hedetniemi, Hedetniemi
and Liestman [7] and Fraigniaud and Lazard [6].

In this work we consider the complete tree topology where processors are confined to the
leaf level. The well-known fat trees, introduced by Leiserson [9] and utilized in Thinking
Machine’s CM-5 multiprocessor [10], are also based on the complete tree topology. The tree
is termed “fat” because the capacities of the branches do not remain constant but rather
increase towards the root. Originally Leiserson studied binary trees but CM-5 is based on
quaternary ones. Here we will consider k-ary trees where k is any integer greater than one.
We will study the above communication problems in the context of such a topology and

determine the time requirements for solving them in the optimum time. Related but not
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Figure 1: A k-ary tree

exactly applicable to fat trees are the works in [5, 3]. The authors in [5] studied among
other problems the problem of broadcasting in complete trees, while in [3] scattering under
the single-port model in arbitrary trees was considered. In both cases the network was
assumed to be wormhole routed and, unlike fat trees, all nodes were assumed to generate
and consume messages.

We should note that in this paper we only provide a short report of the results, avoiding

formal proofs. A more detailed exposition of the present material can be found in [4].

1.1 Preliminaries

Portion of a complete k-ary tree is shown in Fig. 1. Each node has k children, except for
the leaves. The tree consists of log, n 4+ 1 levels of nodes. Level 0 of the tree is the leaf
level and level h = log; n is the level of the root node; n is a power of k£ and denotes the
number of leaves, which will be numbered from left to right as 0, 1, ..., n — 1, as shown
in the figure. The leaves correspond to processing nodes while all the other levels include
only routing nodes. We will assume that the tree has at least three levels, i.e. that A > 2 or
equivalently, n > k? (if h = 1 the graph degenerates to a star which consists of n vertices
adjacent to an additional central vertex). A fat tree is based on the same topology only
branches get thicker (i.e. increase in capacity) as one moves from the leaves to the root.
Branches between levels ¢ — 1 and ¢ have capacity ¢; > 1 and if j > 7 then ¢; > ¢;. The
branch capacity corresponds to the number of physical links included in the branch.
Although the results presented here cover any capacity arrangement, two capacity pat-
terns will be of more interest in later sections: constant and exponential. These two pat-
terns represent two extremes in interconnection size. In the first case ¢; = 1 for all levels

i=1,2,...,h and the resulting tree is the simple k-ary tree. In the second case, ¢; = k*~"'.



Every level of such a tree has n links in total, being able to carry messages from all leaves
at the same time.

The network is assumed to be packet-switched. Messages are of the same size and
consist of a single packet, so that transferring a message between two neighbors needs a
constant amount of time which we take as one time unit (or step). The links are assumed
to be bidirectional and fully duplex; half-duplex links where only one direction can be
accommodated at a time cause a slowdown by at most a factor of two in some of the
algorithms. Each of the routing nodes is equipped with packet queues (although this will
not always be necessary for the algorithms we will discuss). Finally, we will consider two
models of communication capability: in the first one, nodes will be able to utilize only one
of their output links at a time (single-port model). In the multiport model, all links incident

to a node can be utilized simultaneously.

2 Communications under the single-port model

It should be clear that if every node is incapable of sending more than one message at
every time unit, branch capacities have no effect at all. Any fat tree behaves exactly
like the corresponding complete k-ary tree. In this section we will derive lower bounds
for the communication problems we consider and will provide algorithms that achieve the
lower bounds. Notice that we allow any node to receive messages from all its neighbors

simultaneously but it can only send one message at each step.

2.1 Broadcasting

Let us first consider broadcasting from the root v of an arbitrary tree T, where v has d
children v;, 7 =1,2,...,d. Let T, be the subtree rooted at v; and assume that broadcasting
in T,, needs b(T,,) steps. Let us further assume for convenience that the trees have indices
reversely to their broadcast times, i.e. if i < j then b(T,,) > b(T,). Since the root can send
the message to only one child at a time it is clear that the best plan is to send the message
to vy first, then to vy, etc. As a result, the time needed to broadcast from v in T is
b(1) = max {b(1.,) + 1) (1)
If T is a complete k-ary tree with height £ then the k& subtrees rooted at the children of
root v are identical: they are all complete k-ary trees with height £ — 1. Let B, (f) be the
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Figure 2: Broadcasting under the single-port model (a) labeling (b) algorithm

broadcast time from the root in I’. Then the broadcast time for any of the k subtrees is

B, (¢ — 1), and from (1), setting d = k, b(T) = B,.({), b(T,,) = B.({ — 1), we obtain
B.({)=B.({ —1)+ k= B,({) = kL. (2)

Our problem, however, is to broadcast from a leaf of a complete k-ary tree. Let, without
loss of generality, the leftmost leaf be the source node, labeled uy in Fig. 2(a). Starting
from vy’s only parent (labeled u) and following the upward edges we observe the following:
below the ¢th node u; in this path there are £ — 1 complete k-ary trees of height ¢ — 1. If u;
gets informed about the message then all the leaves in these £ — 1 subtrees can be informed
in B,(i— 1)+ k — 1 steps, the earliest. Of course, u; also has to inform its parent. In order
to determine the exact broadcast time for vg we will start from the end of the upward path,
calculate the minimum time needed for broadcasting from that node and then work our
way down to ug, using (1) at each step. We let b(T),,) be the broadcast time remaining
after u; receives the message.

Node uy, in the path is the root node of our original tree. It can only be informed through
its leftmost child. When uy, receives the message it has to inform its k—1 remaining children
as we mentioned above and for this B,(h — 1) + k — 1 steps will be needed. Consequently,
b(Ty,) =B, (h—1)+k—1.

Next, consider up_1. This node has to inform its k£ — 1 subtrees lying below plus its
parent, uy. For the subtrees below B, (h—2)+k—1 steps are needed, while for broadcasting
from up, B.(h — 1) + k — 1 steps are necessary as we just saw. According to (1), the best

plan is to send the message to uy first and to the subtrees below next. Consequently,

b(Ty,_,) = max{b(T,,) +1,B,(h—2)+ k} =b(T,,) + 1.



Proceeding downwards in this manner it is seen that any node wu; must first inform its

parent (u#;11) and then its £ — 1 remaining children, and
b(Ty,) = max{b(Ty,,,) + 1,B,(i = 1) + k} = b(Ty,) + h — 1,

giving b(Ty,) = b(Ty,) + h= B.(h— 1)+ k — 1+ h. Since from (2) B,(h — 1) = k(h — 1),

we have the following result (recall that A = logy, n):

Theorem 1 Broadcasting in fat trees under the single-port model requires (k+1) log, n—1

steps.

Fig. 2(b) shows an algorithm that achieves this lower bound; it is directly derived from

the preceding analysis.

2.2 Scattering

The observation that the source node has to send or receive n — 1 different messages over
its incident link leads to a simple lower bound of S(n) = G(n) > n — 1 steps. As a matter
of fact the exact bound is n or n 4 1 steps (depending on k) and can be seen as follows.
In gathering n — 1 messages at processor 0, in the first two steps we can at most receive
one message since the closest leaf is at distance two. Consequently there will be at least
one step with no message reception by node 0, i.e. S(n) = G(n) > n. If the tree is binary
(k = 2) there will be one extra step of no reception since the next closest leaves (2 and 3)
are both at distance four from node 0, i.e. S(n) =G(n) > n+1if k = 2.

Since a gathering algorithm can be had from a scattering algorithm (and vice versa) by
simply reversing the data paths, we will only consider scattering here. The lower bound of
n or n + 1 steps can be achieved using the furthest-first scheduling discipline whereby the

source node gives priority to messages that have to travel the furthest.
Theorem 2 The furthest-first discipline results in an optimal scattering algorithm.

Proof outline: Assuming that leaf node 0 is the source node, let R; be the routing node
at level ¢ which is the root of the subtree containing nodes 0 to k' —1, as shown in Fig. 3. Let
S; be the subtree rooted at the jth child of R; from the left (the source node belongs to Sp).
The last message destined for any of the subtrees 51,55, ..., S;—1 will leave node 0 before

any message destined for a leaf within Sy does, according to the furthest-first regimen; that
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is, it will leave at time n — &*~" and will arrive at its destination 2i — 1 steps later, at time
T; =n—k'=" +2i—1. The algorithm will thus finish at time 7' = maxy<;<p{1;}. It can be
seen that 15 is a decreasing function of ¢ for ¢« > 2. The maximum value of I; for integer 1
can thus occur only for i =1 or 2= 2. Since Ty = n and Ty, = n— k+ 3, we see that T =n

if k>3and T'=n+1if k= 2, as claimed. O

2.3 Multinode broadcasting

In multinode broadcasting every node broadcasts its own message. If all nodes start broad-
casting at the same time contention will be observed sooner or later at the routing nodes.
An optimal multinode algorithm schedules the traffic in each routing node so that all leaves
receive all messages at the minimum possible time. The algorithm we present next will be
proven to be optimal. First, however, we derive the lower bound for multinode broadcasting

algorithms.

Theorem 3 Any multinode broadcasting algorithm under the single-port model requires at

least kn + (k+ 1)(logi n — 2) + 1 steps.

Proof outline: Consider the k children v;, i = 1,2,..., k, of the root node. Node v;
is at level A — 1 and consequently has £"~' leaves lying below. Each of the leaves will
generate a broadcast message and this message must be sent through a child of v; to wvy;
vy will send it to its remaining & — 1 children and to the root of the tree. Thus vy must
make kk"~! = k" transmissions. In addition, v; will receive all messages coming (through
the root) from vq, v, ..., vg. Each of these messages must be broadcast by vy to all its k

children. This will result in v; making an extra k(k — 1)k"~! transmissions. In total, the
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Figure 4: Multinode broadcasting under the single-port model (a) optimal algorithm (b)

example in 4 leaves

number of transmissions by vy will be k(k — 1)k"~" + k" = k"' = kn and since under the
single-port model it can only send one message at a time, node v; will be busy for at least
kn steps.

The first message will arrive at v; at time h — 1 the earliest since the closest leaf is
at distance h — 1. The last message to leave v; will be sent to one of its children. This
child will have to broadcast this message to the subtree it roots, which is a complete k-ary
tree with height A — 2. Consequently, any multinode broadcasting algorithm needs time
MB(n) > kn+h—-1+B,(h=2)=kn+ (k+1)(logyn —2) + 1. ]

In Fig. 4(a) we give an algorithm for the multinode broadcasting problem and in
Fig. 4(b) we demonstrate its operation for n = 4 leaves. The proof of the following theorem

is given in [4].
Theorem 4 The algorithm presented in Fig. 4(a) is optimal.

2.4 Total exchange

Total exchange causes the densest form of contention on the network. Consider the subtree
rooted at a routing node R; in level ¢. A leaf u in this subtree will generate n — 1 messages

in total, out of which n— k=" will pass through R; as follows. There will be n—&* “upward”
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Send the n — 1 messages in a furthest-first order;

Every Routing Node: (except the root)

A While there exist upward messages from children
Send one message to parent;

B Until the last message arrives from parent

Send one message to any (appropriate) child;

Root Node:
B While receiving all messages from children, keep sending

one message to any (appropriate) child;

Figure 5: Optimal total exchange algorithm under the single-port model

messages, that is messages to be sent through the parent of R; to a subtree other than the
one R; roots. There will also exist messages to be given from the subtree u lies in, to the
other k — 1 subtrees of ;. Those messages will be (k — 1)k~ in number, giving a total
of n — k'~! messages of u that go through R;. Under the single-port model we may easily
determine the lower bound of total exchange algorithms, in a similar fashion to the proof

of Theorem 3.

Theorem 5 Any total exchange algorithm under the single-port model requires at least

n?(2k+1)(k — 1)/k* 4+ 2log, n — 3 steps.

We now present an algorithm that achieves the lower bound of Theorem 5. KEvery
leaf node transmits its n — 1 messages under the furthest-first discipline as in the case of
scattering and every routing node sends all possible messages to its parent before it starts
sending any messages to its children. The algorithm is given in Fig. 5. Since leaves follow
a furthest-first rule, “upward” messages arrive in routing nodes first, followed by messages
destined to within the subtrees rooted at the routing nodes. (For the proof of the following
see [4].)

Theorem 6 The algorithm presented in Fig. 5 is optimal.



Table 1: Time requirements for communications under the single-port model

| Problem || Time |
Broadcasting (k+1)logyn—1
Scattering/Gathering n(ifk>3), n+1(ifk=2)
Multinode Broadcasting kn+ (k+ 1)(logyn —2) + 1
Total Exchange n?(2k + 1)(k — 1)/k> + 2log, n — 3

2.5 Summary of the single-port model

We summarized the results of the previous analyses in Table 1. It is interesting to compare
the relative performance of different trees given that the number of leaves (n) is fixed. The
broadcasting time is a decreasing function of k£ for 2 < k& < 4 and increases with & for k& > 4;
quaternary trees need thus the minimum time. For multinode broadcasting though, binary
trees give the best performance as M B(n) is an increasing function of k for £ > 2. Finally,
for the total exchange problem, ignoring the logarithmic term, it is seen that larger values
of k are needed; at the extreme where k = /n the network consists of only three levels and

total exchange can be performed in ©(ny/n) steps.

3 Communications under the multiport model

We will now assume that a node is able to utilize all its incident links simultaneously. This
model of communication is affected by the capacity arrangement on the branches of the
tree since now the number of messages allowed to cross a link can be greater than one. In
order to compare the performance of fat trees with that of the simple complete k-ary tree,
we will assume that the processor (leaf) connections to/from the routing network are fixed,
and consist of exactly one link. In other words, the capacity of level-1 branches will be

61:1.

3.1 Single-source communications

In any network, broadcasting from a node under the multiport model takes time equal to
d, where d is the distance between the source node and a node farthest from the source. In
our case, since the farthest node from a source is a leaf at distance 2h, broadcasting will
require B(n) = 2h = 2log, n steps. It is easily accomplished by setting the routing nodes

to a broadcast mode whereby the received message is replicated towards all directions.



Scattering and gathering, under our assumptions, is governed by the same bounds as in
the single-port case; there is only one link available from a leaf to a routing node, forcing
only one message to be send or received at a time by a leaf. Consequently, S(n) =G(n) > n
(or n+ 1if k = 2). Had we allowed ¢; > 1, other lower bounds could have been derived in

an obvious way.

3.2 Multinode broadcasting

The same argument used for deriving bounds for scattering/gathering algorithms can be
used to determine lower bounds for multinode broadcasting in the multiport model since
every leaf has to receive n—1 different broadcast messages. The exact bounds are M B(n) >
nif k>3 or MB(n) > n+1if k = 2. It is seen from this bound (and from the fact that
the bound will be shown to be tight) that capacities within the routing network make no

difference at least in terms of speed.
Theorem 7 Multinode broadcasting can be performed in time equal to the lower bound.

Proof outline: The lower bound can be achieved by following a “flooding” procedure:
each node replicates every received message to all possible directions (expect the one the
massage came from). Due to space limitations the reader is referred to [4] for the optimality
proof of this method. |

This flooding algorithm achieves the lower bound but bares the cost of excessive queue-
ing requirements, even for trees with increased capacities. In [4] we take a closer look at
the queue sizes induced at each node; we also give an algorithm which is suboptimal by

2log; n — 2 steps and which completely eliminates the queues.

3.3 Total exchange

Lower bounds for the total exchange problem can be derived by considering the messages
that go through a level h — 1 routing node. A particular node at this level will receive
E'=Y(n — k") = n?(k — 1)/k? “upward” messages from the leaves of the subtree it roots;
those messages will go through the other nodes in level A — 1. If the branch capacities are
¢y, then only ¢;, messages can be transferred at a time from our node to the root of the tree,

so that
k-1

2cp,

TE(n) > n? +2log;n — 1. (3)

10



1 Forallz=0toh -1
/* Phase 1 */
2 Do in parallel for all level A — 1 nodes
3 Transfer all messages from each of the k subtrees

to the other k£ — 1 subtrees;

Figure 6: A total exchange algorithm with no contention

A simple total exchange algorithm that works for any capacity pattern and induces no
queueing is derived as follows. Initially, the k& subtrees of the root node exchange their
n(n —k"~1) messages meant for each other. Then, the k subtrees perform internally a total
exchange in parallel. Iteratively, the algorithm can be stated as in Fig. 6.

During the ith phase a node at level A — i has to pass k"~ (k"=" — k"='=1) messages
over its k incident branches which have capacity ¢,_;. This means that a maximum of
kep—; messages can cross towards the node at a time. To avoid contention while main-
taining maximum speed, exactly kcy,; leaves should dispatch messages at a single step, and
the messages should be appropriately chosen so that their destinations are distinct. By

calculating the time needed for each phase, it can be seen that the algorithm needs time

T = Zh:{ )kh Zw + h2.

=1
Instead of executing the phases serially, it is possible to pipeline the phases appropriately
and save in total h? —2h + 1 steps (see [4]). The pipelined algorithm has a final number of
steps

T = Z{ k= DR 2W+2h—1. (4)

It is seen from (3) that the time needed for our algorithm is slightly suboptimal by a
small constant factor. For the exponential capacities case in particular, the bound of (3) is
not tight since it predicts TFE(n) > n — n/k + 2h — 2. It should be clear that TFE(n) > n
(or TE(n) > n+ 1 if the tree is binary) is a tighter bound, since multinode broadcasting
can be performed in at most as many steps as total exchange [2]. Using ¢; = k*~', from
(4) we see that our algorithm requires T = k" 4+ 2h — 2 = n + 2h — 2 steps. Consequently,
the algorithm we presented above is suboptimal by 2log, n — 2 steps. It is interesting to
see whether the last bound is tight or not. In the next section we show that actually there

exists a tighter lower bound for trees with exponential capacities.

11
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Figure 7: Collapsing the last ¢ levels of the tree gives graph G;

3.3.1 A tighter bound for exponential capacities trees

We show here that for the case of trees with exponential capacities arrangement, a bound
tighter than TF(n) > n exists which guarantees that the total exchange algorithm we
presented is very close to optimal (within 2log, log, n steps) for such trees.

If at any given step of a total exchange algorithm a leaf did not receive a message we
say that a hole occurred in its receptions. Notice that since each leaf must receive n — 1
messages, if the average number of holes per leaf node was w then the algorithm takes time
T > n — 14 w; the equality holds if all leaves had the same number of holes (w).

Consider the graph G; which is derived from our original tree by collapsing its last ¢
levels into a single vertex (see Iig. 7). We then have a collection of k* subtrees 11, Ty, . .., T}
each having n/k' leaves and their roots have a single common parent. The height of the
new graph is h — 7+ 1. In addition we introduce new edges between every pair of leaves
within each of the k* subtrees so that messages within a subtree can be transferred in a
single step. In order to avoid those edges begin used simultaneously, we also impose the
restriction that only one message may be received by a leaf at any time as in the original
tree. It is seen that any total exchange algorithm for the original tree is a total exchange
algorithm for G; (but not vice versa) — the message transfers within the last i levels of our
tree are substituted by no-ops in GG; and the additional edges in G; are not utilized. As a
result, the graph G; can be used to derive a lower bound on total exchange algorithms for
our original tree.

A message will be called internal to subtree T} if both the source and the destination
lie in 7); otherwise the message is external. The crucial observation is that holes will start
appearing in (G; after the first external message is dispatched. Assume that T} is the one
to send the first e external messages at time £. Then at time ¢t 4+ 1 there will be e holes

in the leaves of Ty. In fact, due to the 2(h — i 4+ 1)-step delay external messages suffer

12



before reaching their destinations, no messages will have arrived from any other subtree
before time ¢t 4+ 2(h — i+ 1). Consequently the number of holes in T between times ¢ and
t+ 2(h —1i+ 1) will be equal to the total number of external messages it sent during this
period.

We will now find the minimum number of holes that will occur in every leaf in G;.
Consider any total exchange algorithm for G; and partition time in 2(h—1i41)-step periods.
If there are p such periods (plus possibly a last, shorter one), the algorithm needs time
T > 2p(h — i+ 1). Assume that at the sth period there were ‘ng) holes in T;. Hence
in the first period the total number of holes was w; = wgl) + ?1)52) + o4 wgki). This is
exactly the number of external messages sent (in total) during the first period. During the
second period the total number of holes was wq; = wgl) + 'ng) + o004 wgki) and as a result
the total number of external messages sent during the second period was at most equal to
w1 + wa. In general, during the jth period the maximum number of external messages was
wy 4+ wg + -+ -+ w;. Hence after p periods the total number of external messages observed

was at most
P P

P P
Z(wl +- 4 w;) = Z(p—j—l— 1w; :prj — Z(j — Dw; =pW —Q

j=1 j=1 j=1 j=1
where W =3~ w; is the total number of holes and () is a non-negative term.

FEach leaf node must sent in total n — 1 messages out of which the n — n/k* will be
external, so that the total number of external messages will be n(n — n/k'). This means
that pW > n(n — n/k'). Notice that the average number of holes per node is w = W/n
and since T' > 2p(h — ¢ + 1), the last inequality yields

1
wTZQn(l—ﬁ)(h—i—}—l). (5)
From our earlier discussion, if w is the average number of holes per leaf then
T>n-14w, (6)

the equality holding if all leaves have exactly w holes. Inequalities (5) and (6) can be
combined to determine the minimum value of 7. Since (5) holds for any value of i, we can
choose 7 so that we obtain the best bound on T. For example if 7+ = 1, it can be seen that
T cannot be less than n +h — 1. A tighter bound can be had if we select i = log; h + 1;

after a bit of algebra, we obtain from (5):

1
wT > 2n(1 — E)(h — logy h) > 2nh — 2nlog; h — n. (7)

13



Table 2: Time requirements for communications under the multiport model

| Problem || Time |
Broadcasting 2log,n —1
Scattering/Gathering n(ifk>3), n+1(ifk=2)
Multinode Broadcasting n(ifk>3), n+1(ifk=2)
Total Exchange* >n?(k—1)/(k%n) +2log,n — 1
*see text

If w<qg=2h—2log,h— 1, then (7) gives

2nh —2nlogyh—n L+ n
oh —2log, h—2 ' 2h—2logh — 2

Noting that h = log;, n, and after a bit of algebra we obtain T"> n — 14 ¢. On the other
hand, if w > ¢ then from (6) T > n— 14w > n — 14 ¢. Consequently, the minimum time

can be had only for w = ¢ and in that case
T=n-14+q=n+2h—2log, h—2 steps. (8)

Theorem 8 An optimal total exchange algorithm for exponential capacity trees needs at

least n + 2log;, n — 2log, log, n — 2 steps.

3.4 Summary of the multiport model

The results for the multiport model are summarized in Table 2. The preceding analyses
were based on the assumption that ¢; = 1. It is expected that some of the problems will
require less steps if the first level branches consisted of more than one links; it would be
interesting to see what is the exact effect of ¢; in this case. For the total exchange problem,
the bound given in Table 2 is general but provably not tight in some cases. What we have
shown here is that for trees with exponentially growing capacities, total exchange can be

performed in time n 4 2log, n — 2logy log,n —2 < TFE(n) < n+ 2log, n — 2.

4 Conclusion

We studied the implementation and performance of communication operations in complete
k-ary trees where the processing nodes are confined to the leaf level. The results can be

easily generalized to the case where nodes in level ¢ have k; children, where n = kiky - - - ky,.

14



However, there are still a number of issues to be considered. Multinode broadcasting has

excessive queueing requirements if it is to be performed in the minimum number of steps. It

would be interesting to see what is the lower time bound under the constraint of no queueing.

Another issue for consideration is total exchange under the multiport model. The algorithm

we presented is close to optimal especially in the case of exponential capacities. Improved

bounds though for the total exchange problem need to be found as the straightforward one

does not seem to be tight.

A detailed exposition of this material is available in [4] and can be obtained through

the World Wide Web at http://www-lapis.uvic.ca.
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