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Abstract

Total exchange (or multiscattering) is one of the im-
portant collective communication problems in multi-
processor interconnection networks. It involves the
dissemination of distinct messages from every node to
every other node. We present a novel theory for solv-
ing the problem in any multidimensional (cartesian
product) network. We construct a general algorithm
and provide optimality conditions. It is seen that many
of the popular topologies, including hypercubes, k-ary
n-cubes and general tori satisfy these conditions. The
results we present here apply to the single-port model
were nodes are allowed to send and receive at most one
message during each step.

1 Introduction

Multidimensional (or cartesian product) networks
have prevailed the interconnection network design for
distributed memory multiprocessors both in theory
and in practice. Commercial machines like the Ncube,
the Cray T3D, the Intel iPSC, Delta and Paragon,
have a node interconnection structure based on mul-
tidimensional networks such as hypercubes, tori and
meshes. These networks are based on simple basic di-
mensions: linear arrays in meshes [11], rings in k-ary
n-cubes [6] and general tori, complete graphs in gener-
alized hypercubes [4]. Structures with quite powerful
dimensions have also been proposed, e.g. products of
trees or products of graphs based on groups [14, 9].
One important issue related to multiprocessor in-
terconnection networks is that of information dissem-
ination. Collective communications for distributed-
memory multiprocessors have received considerable
attention, as for example is evident from their inclu-
sion in the Message Passing Interface standard and
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from their support of various constructs in High Per-
formance Fortran. This is easily justified by their fre-
quent appearance in parallel numerical algorithms [3].

Broadcasting,
broadcasting and total exchange constitute a set
of representative collective communication problems
that have to be efficiently solved in order to maximize
the performance of message-passing parallel programs.
In total exchange, which is also known as multiscat-
tering or all-to-all personalized communication, each
node in a network has distinct messages to send to
all the other nodes. Various data permutations oc-
curring e.g. in parallel FFT and basic linear algebra
algorithms can be viewed as instances of the total ex-
change problem [3].

The subject of this work is the development of a
general theory for solving the total exchange problem
in multidimensional networks. A multitude of quanti-
ties or properties in such networks can be decomposed
to quantities and properties of the individual dimen-
sions. For example, the degree of a node is the sum
of its degrees in each dimension. We show here that
the total exchange problem can also be decomposed
to the simpler problem of performing total exchange
in single dimensions. This is a major simplification to
an inherently complex problem for inherently complex
networks. We provide a general algorithm applicable
to any multidimensional network given that we have
total exchange algorithms for each dimension. Opti-
mality conditions are given and it is seen that they are
met for many popular networks, e.g. hypercubes, tori
and generalized hypercubes to name a few.

The results presented here apply to packet-switched
networks with single-port capabilities. This model is
based on the following assumptions/restrictions:

e communication links are bidirectional and fully

duplex

e a message requires one time unit (or step) to be

transferred between two adjacent nodes

e a node can send at most one message and receive

at most one message at each time unit.

scattering, gathering, multinode



Algorithms to solve the problem for certain networks
and under a variety of assumptions have appeared in
many recent works, mostly concentrating in hyper-
cubes and two-dimensional tori (e.g. [15, 10, 2, 16]).
Under the single-port model an optimal algorithm for
hypercubes is given in [3, pp. 81-83].

The paper is organized as follows. We introduce
formally multidimensional networks in the next sec-
tion and we give some of their properties related to
our study. Section 3 gives a lower bound on the time
required for solving the total exchange problem under
our model. In the same section we derive a new for-
mula for this bound in the networks of interest. The
result has its own merit as it also provides almost
closed-form formulas for the average distance in net-
works for which no such formula was known up to now.
In Section 4 we develop the total exchange algorithm
and in Section 5 we give the optimality conditions.
The results are summarized in Section 6.

2 Multidimensional Networks

Let G = (V, E) be an undirected graph! [5] with node
(or vertex) set V and edge (or link) set E. This is the
usual model of representing a multiprocessor intercon-
nection network: processors correspond to nodes and
communication links correspond to edges in the graph.
The number of nodes in G is n = |V|. An edge in E
between nodes v and w is written as the unordered
pair (v,u) and v and u are said to be adjacent to each
other, or just neighbors.

A path in G from node v to node u, denoted as
v — u, is a sequence of nodes v = vy, vy,...,vs = u,
such that all nodes are distinct and for all 0 < ¢ < ¢,
(vi,vit1) € E. We say that the length of a path is
¢ if it contains £ nodes apart from v. The distance,
dist(v,u), between v and u is the length of a shortest
path between v and w. Finally, the eccentricity of v,
e(v), is the distance to a node farthest from v, i.e.
e(v) = maxyey dist(v,u). The maximum eccentricity
in G is known as the diameter of G.

Given k graphs G; = (V;, E;), 1 = 1,2,...,k, their
(cartesian) product is defined as the graph G = G x

-+ X Gy, = (V, E) whose nodes are labeled by a k-tuple

(viy...,v;) and

Vz{(vl, . vk)|vz€Vz,z 1,. k}

E:{((’Ul,..., k) u17 _,’ )
3j: (vj,u;) € Ej and v; = u; for alli;éj},

1The terms ‘graph’ and ‘network’ are considered synonymous
here.
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Figure 1. Cartesian product of two graphs

We will call such products of graphs multidimen-
sional graphs and G; will be called the ith dimension
of the product. The ¢th component of the address tu-
ple of a node will be called the ith address digit or the
1th coordinate. The definition of E above in simple
words states that two nodes are adjacent if they differ
in exactly one address digit. Their differing coordi-
nates should be adjacent in the corresponding dimen-
sion. An example is given in Fig. 1. Dimension 1 is a
graph consisting of a two-node path with Vi = {a,b}
while dimension 2 consists of a three-node ring with
Vo ={1,2,3}. Their product has node set

V ={(a,1),(a,2),(a,3), (b, 1), (b,2), (b,3)}.

Multidimensional graphs have n = |V;||Va]- - |Vi|
nodes, where |V;| is the number of nodes in G;, 7 =
1,2,...,k. Hypercubes are products of two-node lin-
ear arrays (or rings), tori are products of rings. If all
dimensions of the torus consist of the same ring, we
obtain k-ary n-cubes [6]. Meshes are products of lin-
ear arrays [11]. Generalized hypercubes are products
of complete graphs [4].

It will be convenient to use the don’t care symbol
‘x’ as a shorthand notation for a set of addresses. An
appearance of this symbol at an element of an address
tuple represents all legal values of this element. In
the previous example, (a,%) = {(a,1),(a,2),(a,3)},
(%,1) = {(a,1),(b,1)} while (x,%) denotes the whole
node set of the graph.

3 Lower Bound for Total Exchange

In the total exchange problem, a node v has to send
n—1 distinct messages, one for each of the other nodes
in an n-node network. Consider some node v in the
network. If there exist ng nodes in distance d from v,
where d = 1,2,...,e(v), then the messages sent by v
must cross

e(v)
s(v) = Z dng
d=1



links in total. For all messages to be exchanged, the
total number of link traversals must be

Sg = Z s(v).

veV

The quantity s(v) is known as the total distance or the
status [5] of node v.

Every time a message is communicated between
adjacent nodes one link traversal occurs. Under the
single-port model nodes are allowed to transmit only
one message per step, so that the maximum number
of link traversals in a single step is at most n. Con-
sequently, we can at best subtract n units from Sg
in each step, so that a lower bound on total exchange
time is

7> %% = 45(0). (1)

In other words, total exchange requires time bounded
below by the average status, AS(G), of the vertices.

3.1 Status in multidimensional networks

In this section we present a formula for the status of
vertices in multidimensional graphs, as required by the
lower bound of (1). The results are based on the status
of vertices in individual dimensions. For formal proofs
the reader is referred to [§].

Theorem 1 Let G = Gy X Gy X -+ X Gy. If s;(v;) is
the status of v; in G;, 1 = 1,2,...,k, then the status
of v=(v1,v2,...,v;) in G is

= ~ 5i(00) 0
s(v) nzl Vi

The quantity s(v)/(n — 1) is known as the aver-
age distance of node v, giving the average number of
links that have to be traversed by a message depart-
ing from v. It is an important performance measure of
the network since under uniform addressing distribu-
tions it is directly linked with the average delay a mes-
sage experiences before reaching its destination [13].
Hence, Theorem 1 can also be used to calculate the
average distance of vertices in many graphs for which
no closed-form formula was known up to now. As an
example, in generalized hypercubes [4] each dimension
is a complete graph with m; vertices, z = 1,2,...,k.
In a complete graph all nodes are adjacent to each
other, so that s;(v;) = m; — 1. Consequently, the av-
erage distance in generalized hypercubes is

k

n m; — 1 n 1
n—lZ m; :n—1<k_zﬁ)'

i=1 i=1 ’
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Figure 2. A 4 x 3 torus as (a) four copies of a three-
node ring or (b) three copies of a four-node ring

In [4] it was possible to derive a formula only for the
case where all m; are equal to each other.

In the context of the total exchange problem we
are interested in the average status of the nodes in
the network. Let AS(G;) be the average status of G,
defined in (1) as AS(G;) = EvieGi si(vi)/|Vi]- We
have the following corollary.

Corollary 1 Let G =Gy x Gy x -+ X Gy. If AS(G;)
is the average status of G;, ©+ = 1,2,...,k, then the
average status of G is given by

3 AS(G;)
_nz |Vz| . O

4 Total Exchange Algorithm

Let G = AxB. A k-dimensional network G; X - - x Gy,
can still be expressed as the product of two graphs by
taking A = G; X --- X G—1 and B = Gy, so we may
consider two dimensions without loss of generality. Let
A= (Va,Ea), B=(Vp,EB), G =(V,E), ny = V4|,
ne = |Vg| and n = nyny. Finally, let

Va = {vili=12,....,n:}
Ve = {ui]i=12,...,n}.

Graph G consists of ny (interconnected) copies of V.
Let A; be the jth copy of A with node set (x,u;),
where % takes all values in V4. Similarly, G can be
viewed as ny copies of B, and we let B; be the 2th
copy of B with node set (v;,*). An example is shown
in Fig. 2.

We will develop the basic idea behind our algo-
rithm through the example in Fig. 2. Consider the
top node of A;. This node belongs to A; as well as
B;. All nodesin A; have, among other messages, mes-
sages destined for the rest of the nodes in A;. These



messages can be distributed by performing a total ex-
change within A;. In addition, nodes in A; have mes-
sages for all nodes in Ay, A3 and A4. Somehow, these
messages have to travel to their appropriate destina-
tions. What we will do is the following: all messages
of the top node of A; meant for the nodes in Ay will
be transferred to the top node of A,. All messages of
the middle node of A; destined for the nodes in A,
will be transferred to the middle node of A,. Similar
will be the case for the bottom node of A;. Once all
these messages have arrived in A,, the only thing re-
maining is to perform a total exchange within A, and
all these messages will be distributed to the correct
destinations.

Next, nodes of A; have to transfer their messages
meant for A; to nodes of A;. The procedure will be
identical to the procedure we followed for messages
meant for A;. Finally, the remaining messages in A,
are destined for A4 and one more repetition of the
above procedure will complete the task. Notice that
what we did for messages originating at nodes of A;
has to be done also for messages originating at the
other copies of A, i.e. Az, A3 and A;. We are now
ready to formalize our arguments.

We are going to adopt the following notation:
M, ;) (vk, uy) will denote the message of node (v;, u;)
destined for node ('Uk,ul). We will furthermore in-
troduce the ‘x’ symbol to denote a corresponding set
of messages. For example, m,, ) (*,u1) denotes all
messages of node (vi, Uj) destined for the nodes of A,
and my,, . (v, ur) denotes all messages of B; destined
for node (vg,u;). Similarly, m,, ;) (*, *) denotes all
messages of (v;,u;). Notice that this last set normally
includes myy, y;)(vi, u;) since (x,x) covers all nodes.
Since no node sends messages to itself, it is always im-
plied that from any set of messages, we have removed
message whose source and destination are the same.

Comnsider the set of messages m(*,*)(*, ). This set
represents our total exchange problem: every node has
one message for every other node. Next consider the
seb M« q;) (*,u;). This is the set of messages of nodes
in A; destined for the other nodes in Aj;: they can
be distributed by a total exchange operation within
A;. Finally, consider the set *m(v“uj)(*,uk) of node
(vs,u;) meant for the nodes of Aj. This set will be
transferred to node (v;,uy). Thus, after such trans-
fers, node (vi,ur) will have received m(vhuj)(*,uk),
node (vq, uy) will have received my, o) (*, ur), and so
on. Notice that every node in Aj, will have received
messages meant for every node in Aj: these messages
clearly can be distributed to the appropriate destina-
tions through a total exchange operation within Ay.

The first problem we have with this approach is

1 Do in parallel for all v; € V4 (i = 1,2,...,n1)

2  Forevery j =1,2,...,n2

3 Forevery k =1,2,...,n2, k#i

4 Transfer messages M., ;) (%, ux) to node

(vi, ux) using links in B;;
5 For every k =1,2,...,n,
6  Doin parallel for all 4;, 7 =1,2,...,n;
7 In A; perform total exchange with node (vi, u;)
sending messages m(y; u,) (%, 15);

Figure 3. Algorithm Al

that there may exist path collisions when node (v;,u;)
transfers messages to (vj, ur) and node (v, u;) trans-
fers messages to (vy,ur), t Z i'. We can avoid these
collisions if we only allow use of links in the second di-
mension (B). That is, the allowable paths (v;,u;) —
(vi,uk) involve only nodes (1)1-, *) of B;. Then if v;r #
v;, paths (vi,u;) — (vi,ur) and (vi,u;) = (vir,ug)
have no node in common. Let us consider again the
example in Fig. 2. At some point all nodes in A; want
to transfer their messages, say, for nodes in A4. The
top node of A; can transfer its messages to the top
node in A4, the middle node of A; can transfer its
own messages to the middle node of A4 and so on,
without any interference between them. The trick is
to use only paths in the second dimension. That is,
all the transfers of the top node of A; use links in By,
all transfers from the bottom node of A4; use links in
Bs, etc.

To recapitulate, we can solve the total exchange
problem in G = A x B using Algorithm Al shown
in Fig. 3. First we perform all the transfers we de-
scribed above and then we perform the total exchanges
within each A;. The transfers correspond to lines 1-
4 in Algorithm Al. After they are completed, ev-
ery node (vj,uj), for every ¢, j, will have received
all messages meant for the jth copy of A originat-
ing at nodes (vj,ug), k = 1,2,...,ns, i.e. all mes-
Sages My, u,)(*,u;). Lines 5-7 of the algorithm dis-
tribute these messages to the correct vertices of A; in
ng rounds. In the kth round a total exchange is per-
formed and the exchanged messages have originated
from Ajy,.

Algorithm Al solves the total exchange problem
but lines 1-4 do not show how the transfer of messages
is exactly implemented. Within B; we need to transfer
Messages My, v ) (*, ur) from every vertex u; to every
other vertex uy. In Table 1 we list the messages to
be transferred by some vertex (v;,u;) of A;. Notice
that we do not have to transfer messages meant for A;
anywhere, so the jth column of the table is actually
unused (it will only be used for a total exchange within
A;). Column k contains all messages of (v;,u;) meant



Table 1. Messages to be transferred from node (vi,u;).

| || For A, | cee | For Ay | cee | For A,, |
Rl m(vivvj)(v17u1) "l(v,-.vj)(vlyuk) m(vw,j) (U17un2)
R, My, 0;) (V25 1) Mo, v;) (V25 Uk) M(; 0;) (V25 Uny)

R"l m(vi,vj)(vnuul)

m(vi,vi) (vnla uk)

M(wi,vi) (vnl s Uny )

1 Forr=1,2,...,m

2 Do in parallel for all B;, i =1,2,...,n1

3 In B; perform total exchange with node (v;,u;)
sending messages m(vi‘uj)(vr, x), 7 =1,2,...,n0;

4 For every k =1,2,...,n2

5 Do in parallel for all 4;, 7 =1,2,...,n2

6 In A; perform total exchange with node (v;,u;)
sending messages My, u,) (%, %;), i = 1,2,...,n1;

Figure 4. Algorithm A2

for Ay, to be transferred first to node (v;, ug).

Instead of transferring the messages column by col-
umn (i.e. transfer all messages in column 1 to Aj,
then all messages in column 2 to A, etc.) we trans-
fer them horizontally (row by row). The batch R, of
messages in row r contains all messages my, ;) (v, %).
We will transfer all of them, except of course for
M(y,,u;)(Vr, uj) in column j which is meant for a node
of A;. Let us consider again the network in Fig. 2 and
assume that the bottom nodes of A;, A5, A3 and Ay
want to transfer their first batch, ;. The batch of the
bottom node of A; contains one message for each of
the bottom nodes of A;, A3 and A4. Similarly, batch
R; for the bottom node of A; contains one message
for the other three nodes in question. It should be
immediately clear that these messages constitute an
instance of the total exchange problem in B;: every
node has one message for every other node in Bj.

In general, when every node (v, u1), (vi,us), ...,
(vi7un2) in B; transfers its own batch R, of Table 1,
a total exchange within B; can distribute the mes-
sages appropriately. Consequently, all rows of Table 1
of every node will be transferred where they should
by performing n; total exchanges in B;: at the rth
exchange all nodes (v;, %) transfer their rth batch of
messages (rth row of the corresponding tables).

Based on the above discussion, and recalling that
transfers within B; do not interfere with transfers
within By, ' # 1, we may express our total exchange
algorithm in its final form, Algorithm A2, appear-
ing in Fig. 4. Algorithm A2 is a general solution
to the total exchange problem for any multidimen-
sional network. If the network has k > 2 dimensions,

G = G X -+ X Gy, Algorithm A2 can be used recur-
sively, by taking A = G; X --- X Gj_1 and B = Gy.
The total exchangesin A; (lines 4-6) can be performed
by invoking the algorithm with A = G; X -+ X Gf_»
and B = G_; and so forth.

The algorithm is in a highly desirable form: it only
utilizes total exchange algorithms for each of the di-
mensions. The problem of total exchange in a complex
network is now reduced to the simpler problem of de-
vising total exchange algorithms for single dimensions.
For example, we are in a position to systematically
construct algorithms for tori, based on algorithms for
rings.

5 Optimality Conditions

It is not very hard to calculate the time required for
Algorithm A2. Lines 1-3 perform n; total exchanges
within B; (for all ¢ = 1,2,...,n; in parallel), each
requiring T steps. Similarly, lines 4-6 perform ns
total exchanges within A; (for all j = 1,2,...,n, in
parallel), each requiring Ta steps.

Theorem 2 If single-port total exchange algorithms
for graphs A and B take T4 and Ty steps correspond-
ingly then Algorithm A2 for G = A X B requires

T=nTp+nyT4

time units. O

Using a simple induction the following can be
proven:
Corollary 2 If G = Gy X G2 X - -+ X G, and a single-
port total exchange algorithm for G; takes T; time
units, 1 = 1,2,...,k, total exchange in G under the
single-port model can be performed in

k
T;
T=n —
2w
steps, where n = |V4||Va| -+ |[Vk|. O

Combining Corollary 1 with Corollary 2, we can
prove the following;:



Theorem 3 If single-port total exchange for every di-
mension 1t = 1,2,...,k of G = G1 X G2 X--- X G}, can
be performed in time equal to the lower bound of (1)
then the same is true for G. 0O

The last theorem provides the main optimality con-
dition for Algorithm A2. If we have total exchange
algorithms for every dimension and these algorithms
achieve the bound of (1) then Algorithm A2 also
achieves this bound. For example, in hypercubes ev-
ery dimension is a two-node graph. Trivially, in a
two-node graph the time for total exchange is just one
step, equal to the average status. Thus the optimal-
ity condition is met and the presented algorithm is an
optimal algorithm for single-port hypercubes.

More generally, we have shown elsewhere [7] that
there exist algorithms that need time equal to (1) for
any Cayley [1] network. Consequently, the optimal-
ity condition is met for arbitrary products of Cayley
networks. Rings and complete graphs are examples
of Cayley networks and thus Algorithm A2 solves op-
timally the total exchange problem in k-ary n-cubes,
general tori and generalized hypercubes.

6 Summary

In this paper we studied the total exchange problem in
the context of multidimensional networks, under the
single-port model. We showed that the problem can
be decomposed into the simpler problems of devising
total exchange algorithms in individual dimensions.
Given that we have such algorithms that achieve the
lower bound of (1) for each of the dimensions, we
can synthesize optimal algorithms for the multidimen-
sional network.

Many popular networks, including hypercubes, tori,
generalized hypercubes and, in general, products of
symmetric graphs in the Cayley class, consist of di-
mensions for which algorithms achieving the bound in
(1) are already known. Algorithm A2 is thus an op-
timal solution to the total exchange problem for the
above networks.

A detailed exposition of this material, which also
includes some extensions to the multiport model
(where every node can communicate with all its
neighbors simultaneously) is available in [8] and
can be obtained through the World Wide Web at

http://www-lapis.uvic.ca.
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