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ABSTRACT!

In this work, we present the Hypercycles, a class of
multidimensional graphs, which are generalizations of the n-
cube. These graphs are obtained by allowing each dimension to
incorporate more than two elements and a cyclic interconnection
strategy. Hypercycles, offer simple routing, and the ability, given
a fixed degree, to chose among a number of alternative size
graphs. These graphs can be used in the design of interconnection
networks for distributed systems tailored specifically to the
topology of a particular application. We are also presenting a
back-track-to-the-origin-and-retry routing, whereupon paths
that block at intermediate nodes are abandoned, and a new
attempt is made. Intermediate nodes are chosen at random at
each point from among the ones that form the shortest paths
from a source to a destination. Simulation results that establish
the performance of a variety of conflgurations are presented. In
addition our initial attempt of constructing a Hypercycle based
router is discussed.

1.0 Introduction

Message passing concurrent computers such as the
Hypercube[11, 17}, Cosmic Cube[15], MAX[12, 13], consist of
several processing nodes that interact via messages exchanged
over communication channels linking these nodes into one
functional entity.

There are many ways of interconnecting the computational
nodes, the Hypercube, Cosmic Cube, and the Connection
Machine[18] having adopted a regular interconnection pattern
corresponding to a binary n-dimensional cube, while MAX adopts
a less structured, yet unspecified topology.

Several recent studies attempt extensions and generalizations
of the basic tenets of the n-cube. Broder et. al. [4] have proposed
product graphs(14] of small “basic" graphs. Their prime concern
is to synthesize fault tolerant networks with a given degree of
coverage. In these multidimensional graphs, they define a single
route from a source to a destination, as the product of routes in
each of the constituent dimenstons. Routing is exhausted in each
dimension before another dimension is considered. Bhunyan and
Agrawal [3] have introduced the generalized hypercubes (GHC)
which are also graph products of fully connected "basic” graphs.
The mixed radix system [2] 1s used to express the properties of
these graphs and their routing. Wittie [19] gives a good overview
and comparison of several interconnection networks including
the spanning bus and dual bus hypercubes. These are essentially
binary n-cubes with broadcast busses connecting the processors
in each dimension.

The advantages of having a regularly structured
interconnection are many-fold, and they have been proven time
and again in their being incorporated in many recent designs
[6,11,12,13,15,17,18]. In these structures, easy deadlock-free
routing (7] can be accomplished by locally computing each
successive intermediate node -for a path that originates at a
source node and terminates at a destination node- as a function of
the current position and the desired destination. Many regular
problems (such as the ones found in image processing, physics
etc.) have been mapped on such regular structures, and run on the
corresponding machines exhibiting significant speedups.
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In contrast, embedded real-time applications [12, 13], tend to
exhibit variable structures that do not necessarily map optimally
to an n-cube. In addition, since the size of a binary n-cube is given
as 21 | it means that a particular configuration cannot be
expanded but in predefined quantum steps. For example, if a
given embedded application requires a system comprised of 9
nodes, the next larger n-cube with 16 nodes must be chosen. This
constitutes a significant increase in resource allocation,
especially in power-mass limited environments.

Hypercycles[13} can be considered as products of "basic"
graphs that allow, as compared to the Generalized Hypercubes
(GHC) (3], a richer set of component "basic” graphs ranging in
complexity from simple rings to the fully connected ones used in
the GHC. Also, contrary to Broder et al [4], we define the
component graphs and provide analytical expressions for
routing, our aim being twofold:

(a) To provide computer interconnection networks that match
the node requirements of a given embedded system.

(b) To increase throughput of a given network by providing
routing expressions that can be computed analytically (and
hence are candidates for VLSI implementation) and which
provide a maximum number of alternate paths from a
source to a destination. The existence of alternate paths
guarantees that a message will not be blocked waiting for its
single route to be freed, but it would in turn search for the
availability of alternate paths. This strategy also provides
for fault protection, since a faulty path can be marked
permanently busy, and thus messages can be routed around
it..

The Hypercycles, being regular graphs, retain the advantages
of easy routing and regularity. Yet, since we are dealing with a
class, rather than isolated graphs, we have the flexibility of
adopting any particular graph (from the class) that closely
matches the requirements of a given application.

This work is divided into these parts. Section 2.0 introduces
the Mixed Radix System, Section 3.0 presents some basic graph
terminology and notation, while Section 4.0 introduces the
Hypercycles and discusses their properties. Sections 5.0 and 6.0
discuss routing and evaluate the performance of several example
Hypercycles.

2.0 Mixed Radix Number System

The mixed radix representation (2], is a positional number
representation, and it is a generalization of the the standard b-
base representation, in that it allows each position to follow its
own base independently of the other.

Given a decimal number M factored Into r factors as
M=mj x mgxmg.x - xmy then any number 0 < X <M-] can be
represented as
(X)mymy..m, = X1%2-% | mymg...m, Where 0 s x(<(my-1):

r
{= 1,2....r and the x{s are chosen so that X = z x w, where w

t=]
M

rnlrn2 ...ml

3.0 Hypercycies.
An r- dimensfonal Hypercycle, is the following regular

undirected graph: 6&:{74#‘ . 1‘,5‘} where N,‘:‘ is the set of nodes



E,‘;‘ the set of edges, m =mj.mg,m3.....m, a mixed radix,

P=P1P2-Pri P < my/ 2 the connectivity vector, determining the
connectivity in each dimension which ranges from a ring (p;=1)

to fully connected (py=|m; /2 |). Nsl ={0,1,2,....M-1}. Given
a,fe N#l then (a,B)e Eg.l if and only If there exdsts 1 <j<r
suchlhat)?j =(aji£j)modrr5 with lsﬁjrspj anday =B {4

Hypercycles, have degrees (8] d = z_f (m,.p;) where
i=1
2p, f 2p; <my
f‘"'l'p!)={ml-1 i 2 =m
and diameter k 1.
r
Lm, 72J
k= [
i=1 Py

The n-cube is a Hypercycle, with M = 2x2 x--x2 = 2 and
p=111,.1.

8.1 Routing

Hypercycles, have routing properties that are similar to those
of the n-cube. Given nodes

(a)m, mg...mq...m, = ¥1%--0p..0 and (o) mmg..m..m, - 91
a,....¢...a,, a walk, from node ato node a*, can be constructed as
follows:

@020 0, a,az...él...ar. a,az...ljz....ar. - @az.§.a . such
that$

(6,',- 4’P.') mod m; if [(é 'éj,.) mod m; ‘l;;‘,’é

(&, +[€.+] modp.) mod m, 1€ [(§-&, ) moa m - ¢,.&
gi,u =1 ('5,', ‘pi) mod m, if [(éi.» 'é) mod m; = |§i.~'§

(é,', _|§j,-'§| m°dpi) mod m; if [(5; ‘5) mod '|§j,-'§

3 if [¢,.¢ < p

& =0 Erax = & Eqn. 3.1.1

Equation 3.1.1 defines all the minimum-length paths from a
source to a destination in a single dimension. Parts (a), and (c)
constitute a greedy strategy where the maximum step towards the
destination is taken. Parts (b) and (d) form alternate paths by
allowing the step described in part (e) to be taken earlier. Observe
that there is only one step of length smaller than the maximum,
and when it is taken it is guaranteed that the remaining steps will
be maximal. This is because

I(éji iléj,-'él modp,-) mod mi,gl modp; = 0

Given an origin (a)m’ mg..m, = @]Q,...a and a destination
(ﬂ)m, mg..m, = B} B,...B, then distinct walks of minimum length
that connect them are constructed according by sequentially
modifying the source address, each time substituting a source
digit by an intermediate walk digit determined according to
equation 3.1.3, until the destination is formed. The following
walk connects source to destination.
source =a,a,a; ..a,;; a,;&; a; .
@bV apa by v, ap
BB, B;...B, =destination

ag aépy ag
i ap by By oa..

¥ The function | x| denotes the largest integer smaller than or equal to x.

and [yldenotes the smallest integer larger than or equal toy.
§ We define |a, bl = min{(a -bmodm,, (b -aJmodm}

|-o
]>p,. and |§l.'_,§| modp;, # 0 (b)
]’p.'

|-

If only the greedy strategy is followed, it results to a total of ¢

I ? d
'(ql -sz--qr)‘ a7 a0 -a,
paths of mintmum length that connect them.

r

dis(e, f)=q= Z g, . is the distance between the origin and the
(=1

destination. We shall call the so formed paths greedy paths.

Figure la., gives an example of two distinct walks of equal
minimum length that connect a source to a destination, for a
Hypercycle.

4.0 Deadlock Avoidance in Routing,

In section 3.1, we presented a method that establishes at least
one path of minimum length from a source to a destination node.
In this part, we are concerned with optimally choosing one of the
paths. Routing must be efficlent and deadlock free. Deadlock
occurs when resources (in this case node to node communication
segments) are allocated so that the completion of a partial path
requires a segment already allocated to a different partial path
which in turn waits for a segment in the first partial path. It is
obvious that no messages can propagate over the deadlocked
paths, and the only remedy is to break the already established
and deadlocked partial paths and try again.

Deadlock may occur easily in cases where the segments that
form the paths are chosen at random. Certain routing algorithms
(e.g. virtual channels, e-cube routing {7]) prevent deadlocks by
ordering the resources (channels) to be allocated. Thus a lower
order resource cannot be committed if a needed higher order
resource cannot be obtained. The disadvantage of this approach
in an interconnection network is that it limits the number of
paths connecting a source to a destination to exactly one, even
though several alternate free paths may exist at a particular
moment. We are proposing to adopt a strategy where deadlocks
are avoided by requiring a blocked partial path to backtrack to its
origin and retry.

(a)

(c)
and [£,,¢| modp, = 0 (d)
(e)

5.0 Backtrack-to-the-origin-and-retry routing

For Hypercycle-based interconnection networks, because of
the existence of cycles in each dimension, the use of an e-cube type
routing that prevents deadlocks, is impractical. We are proposing
instead a deadlock avoiding routing strategy. According to our
backtrack-to-the-origin-and-retry routing we tdentify, at each
node, all nodes that can be used for the continuation of the path.
For all such identifled nodes, we also identify the corresponding
ports that can be used in order to continue the path. Since several
paths may be forming in parallel, some of these ports may
already be allocated to some other path. After excluding all the
allocated ports, we select one of the remaining free ports at
random. The subsequent link in the path is established is then
established through the selected port, and the procedure repeats
itself until the destination is reached, or no free ports could be
found. If no free ports are to be found at an intermediate node in
the path, then a break is returned to the origin (through the
already established partial path to the blocking node), the partial
path is dissolved, and a new attempt for the creation of the
required path is initiated. This routing strategy avoids deadlocks
through backtracking, and also guarantees that the formed path
will be of a minimum length, since each subsequent link is
selected according to equation 3.1.1. The backtrack-to-the-
origin-and-retry routing is a type of two-phase locking {16}, where

tFor the definition of a multinomial number, see [1] pp 32.



as resources we consider the various links necessary for the
completion of the source-to-destination circuit.

We have used Extend™! to construct a simulator capable of
straulating any Hypercycle based network. For this simulator, we
implemented both the backtrack-to-the-origin-and-retry as well
as the e-cube routing strategies. The e-cube routing can only be
used for binary cube networks. For each node, we assumed a
Poisson message generator which generates packets with uniform
distribution of destinations. Each packet carries the destination
address which 1s used for routing. Links are assigned priorities,
so that collisions can be resolved. We assumed a packet
transmission time (over an established source to destination
path) of 100 simulation-clock ticks. We used the simulator to
obtain the throughput and delay characteristics of several
networks for both e-cube and backtrack-to-the-origin-and-retry
in terms to the offered load. Both the offered load and the
throughput were normalized in terms to the maximum capacity
of each network taken to be proportional to the number of links
in the corresponding graph. The average delay was expressed in
actual time units necessary to establish a source-to-destination
circuit. Stmulation results are depicted in fig. 2.

As it was expected, the performance of the backtrack-to-the-
origin-and-retry for both binary cubes and hypercycles of stmilar
sizes, is clearly superior to that of the e-cube. This is attributed to
the fact that the backtrack-to-the-origin-and-retry can use
alternative paths to the destination instead of the single path
allotted by the e-cube routing. The additional advantage of the
backtrack-to-the-origin and-retry is its inherent fault tolerance.
Indeed, if one of links in the network failed, it could be marked as
permanently busy, and packets would be routed around it. This
obviously is not the case for the e-cube routing.

Generally, system throughput and delay are functions of both
average distance and the average number of alternate paths
between any two nodes.

6.0 Router Implementation Status

The backtrack-to-the-origin-and-retry with greedy routing,
as discussed above, is currently being implemented in hardware.
Figure 3 gives a block diagram of an r-dimensional Hypercycle
router.

As it can be seen in Figure 3. we are implementing our routing
as a system having four modules. The destination address is used
in the Next-Port Generator to generate all possible ports that can
be used in forming the path to the required destination address.
Subsequently, the Port Validator masks out the ports which are
currently used by other paths. Finally, The Port Selector, selects
at random one of the validated ports which is then used to
continue the circuit towards the required destination.

For the random number generator, we use a mixed
congruential random number generator to generate a 16 bit
random numbers, which we use to obtain its modk where k is the
number of valid ports incoming to the Port Selector. It is worth
noting that the system is programmable, in the sense that it needs
the parameters m, p as defined earlier and which define the
structure of the network, as well as £ which the address of the
current node.

We have completed the implementation of a 16 port 4-
dimensional routing engine in 1.2y technology. Our design is
currently under fabrication by CMC. Simulation results ylelded
propagation delays of less than 50 ns in choosing an available
next port. A micrograph of the designed engine is given in
Figure 4.

7.0 Conclusions and Discussion

In this work, we presented the Hypercycle, a class of
multidimensional graphs, which are essentially generalizations
of the n-cube.

Although these graphs are not the densest possible, they are
attractive, because of their simple routing. Similarly to the n-
cube, the destination address is used to sequentially route a
message through intermediate nodes as outlined in section 3.1.
Also, since the node addresses are represented in a mixed radix as
a sequence of r-digits, each one of these digits is processed
independently and in parallel with the remaining digits. Thus the
hardware involved in the routing can be made fast (because of the
parallelism) and simple {since each module need only handle
arithmetic modm, , as compared to arithmetic modm mga...mp

needed when all the address digits are necessary as is the case

t Extend is a trademark of Imagine That inc.

with such networks as the chordal rings {10], or the cube
connected cycles {5]).

The graphs presented in this study, are generalizations of
some well known graphs such as the binary n-cube, 2- and 3-
dimensfonal meshes, and rings, which are included as spectal
cases. Examples of some special cases are depicted in Figure 1.
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Figure 1. Examples of Hypercycles.
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Figure 2. Delay vs. offered load for the 4-cube using backtrack-to-
the-origin and e-cube routing. The offered load is normalized to
the capacity of the interconnection network. The delay is
normalized to the data transmission time.
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Figure 4.The implementation of a 16-port 4-dimensional
Hypercycle Routing Engine in 1.2 1 NT CMOS4S technology.



